给出完整MATLAB代码,证明基因对在动物遗传过程中所占的比例基本保持不变,基因对有AA、Aa、aa
时间: 2024-09-25 11:07:57 浏览: 83
在MATLAB中,验证基因频率在种群遗传过程中是否稳定,通常涉及到孟德尔遗传定律和哈代-温伯格平衡(Hardy-Weinberg Equilibrium)。假设我们有一个二态等位基因(比如A/a),我们可以模拟随机交配并检查每个基因对(AA, Aa, aa)的频率是否接近理论值。以下是简单的代码示例:
```matlab
% 定义初始基因频率
p = 0.6; % 基因A的频率
q = 1 - p; % 基因a的频率
% 设置世代数和种群大小
generations = 100; % 遗传过程世代数
population_size = 1000;
% 初始化基因组合数组
genotypes = zeros(generations, population_size, 2);
% 孟德尔随机交配(Hardy-Weinberg平衡)
for gen = 1:generations
parents = randi([0 1], population_size, 2); % 父母的基因组合
offspring = parents + (rand(population_size, 2) < 2 * [p q]).*2 - 1; % 子代随机继承父母的基因
% 更新基因组合
genotypes(gen, :, :) = offspring;
end
% 计算每一代的基因对频率
frequencies = sum(genotypes == [1 1], 2)/population_size; % AA
frequencies_Aa = sum(genotypes == [1 0], 2)/population_size; % Aa
frequencies_aa = sum(genotypes == [0 0], 2)/population_size; % aa
% 检查是否接近理论值
expected_frequencies = [p^2, 2*p*q, q^2]; % 根据H-W定律的期望值
deviations = abs(frequencies - expected_frequencies);
mean_deviation = mean(deviations);
% 输出结果
disp(['After ' num2str(generations) ' generations, mean deviation: ' num2str(mean_deviation)])
% 绘制基因频率变化趋势
plot(frequencies(1:end-1, :), '.-');
xlabel('Generation');
ylabel('Gene Pair Frequency');
title('Gene Frequency Over Generations');
阅读全文