用pytorch绘制模型学习曲线的代码
时间: 2023-06-06 10:09:09 浏览: 109
以下是使用pytorch绘制模型学习曲线的代码:
```python
import matplotlib.pyplot as plt
import numpy as np
import torch
import torch.nn as nn
import torch.optim as optim
from torchvision import datasets, transforms
# Load Data
transform = transforms.Compose([transforms.ToTensor(),
transforms.Normalize((0.5,), (0.5,)),
])
train_set = datasets.MNIST('./data', download=True, train=True, transform=transform)
test_set = datasets.MNIST('./data', download=True, train=False, transform=transform)
train_loader = torch.utils.data.DataLoader(train_set, batch_size=64, shuffle=True)
test_loader = torch.utils.data.DataLoader(test_set, batch_size=64, shuffle=True)
# Define Model
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
self.fc1 = nn.Linear(784, 512)
self.fc2 = nn.Linear(512, 256)
self.fc3 = nn.Linear(256, 10)
def forward(self, x):
x = x.view(-1, 784)
x = torch.relu(self.fc1(x))
x = torch.relu(self.fc2(x))
x = self.fc3(x)
return x
model = Net()
# Define Criteria and Optimizer
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(model.parameters(), lr=0.01)
# Train and Test
train_loss = []
train_acc = []
test_loss = []
test_acc = []
epochs = 10
for epoch in range(epochs):
running_loss = 0.0
running_corrects = 0.0
for images, labels in train_loader:
optimizer.zero_grad()
outputs = model(images)
loss = criterion(outputs, labels)
_, preds = torch.max(outputs, 1)
loss.backward()
optimizer.step()
running_loss += loss.item() * images.size(0)
running_corrects += torch.sum(preds == labels.data)
epoch_loss = running_loss / len(train_loader.dataset)
epoch_acc = running_corrects.double() / len(train_loader.dataset)
train_loss.append(epoch_loss)
train_acc.append(epoch_acc)
model.eval()
with torch.no_grad():
running_loss = 0.0
running_corrects = 0.0
for images, labels in test_loader:
outputs = model(images)
loss = criterion(outputs, labels)
_, preds = torch.max(outputs, 1)
running_loss += loss.item() * images.size(0)
running_corrects += torch.sum(preds == labels.data)
epoch_loss = running_loss / len(test_loader.dataset)
epoch_acc = running_corrects.double() / len(test_loader.dataset)
test_loss.append(epoch_loss)
test_acc.append(epoch_acc)
print('Epoch {}/{} - Training Loss: {:.4f} - Training Acc: {:.4f} - Test Loss: {:.4f} - Test Acc: {:.4f}'.format(epoch+1, epochs, epoch_loss, epoch_acc, epoch_loss, epoch_acc))
# Plot Accuracy
x = np.arange(1, epochs+1)
plt.plot(x, train_acc, label='Training Accuracy')
plt.plot(x, test_acc, label='Test Accuracy')
plt.xlabel('Epoch')
plt.ylabel('Accuracy')
plt.legend()
plt.show()
# Plot Loss
plt.plot(x, train_loss, label='Training Loss')
plt.plot(x, test_loss, label='Test Loss')
plt.xlabel('Epoch')
plt.ylabel('Loss')
plt.legend()
plt.show()
```
这段代码会训练一个简单的网络在MNIST数据集上进行分类,并绘制出训练过程中的准确率和损失曲线。
阅读全文
相关推荐















