有多种物品和多个背包都为规则长方体,且物品和背包都有长、宽、高、体积、重量、一定数量,现需把物品放到背包里,装载时采用“密度递增”的定序规则和“占角策略”的定位规则,将密度最小的货物第一个放入原点所在的角落,依次填充背包。同时在货物摆放过程中,设置重量约束,体积约束、三维尺寸约束(即长、宽、高约束),背包重量平衡约束,直到剩余空间不再支持继续放入货物。以背包空间利用率最大为目标函数,求解货物摆放情况。请用Python对上述问题举一个例子补充数据建模求解,并输出最优装载方案,详细至哪个背包放了哪种物品多少个
时间: 2023-05-31 16:02:19 浏览: 64
本题可以使用混合整数规划(MIP)进行求解。具体实现可以使用Pyomo这个Python建模工具,它可以方便地对MIP问题进行建模和求解。
下面是一个简单的例子,假设我们有两个背包和三种物品。它们的属性如下表所示:
| 物品 | 长 | 宽 | 高 | 体积 | 重量 | 数量 |
| --- | --- | --- | --- | --- | --- | --- |
| A | 2 | 2 | 2 | 8 | 1 | 5 |
| B | 3 | 3 | 3 | 27 | 2 | 3 |
| C | 1 | 1 | 1 | 1 | 1 | 10 |
| 背包 | 长 | 宽 | 高 | 体积限制 | 重量限制 |
| --- | --- | --- | --- | --- | --- |
| 1 | 5 | 5 | 5 | 125 | 10 |
| 2 | 4 | 4 | 4 | 64 | 8 |
我们的目标是最大化背包空间利用率,即最大化装载物品的总体积。同时,我们需要满足重量、体积、尺寸和平衡约束。
下面是一个用Pyomo进行建模的例子代码:
```python
from pyomo.environ import *
# 创建一个新的混合整数规划模型
model = ConcreteModel()
# 定义物品、背包和空间利用率
model.items = Set(initialize=['A', 'B', 'C'])
model.bags = Set(initialize=[1, 2])
model.utilization = Var(within=NonNegativeReals)
# 定义物品的属性
model.length = Param(model.items, within=PositiveIntegers)
model.width = Param(model.items, within=PositiveIntegers)
model.height = Param(model.items, within=PositiveIntegers)
model.volume = Param(model.items, within=PositiveIntegers)
model.weight = Param(model.items, within=PositiveIntegers)
model.quantity = Param(model.items, within=PositiveIntegers)
# 定义背包的属性
model.bag_length = Param(model.bags, within=PositiveIntegers)
model.bag_width = Param(model.bags, within=PositiveIntegers)
model.bag_height = Param(model.bags, within=PositiveIntegers)
model.bag_volume_limit = Param(model.bags, within=PositiveIntegers)
model.bag_weight_limit = Param(model.bags, within=PositiveIntegers)
# 定义物品的变量
model.item_count = Var(model.items, within=NonNegativeIntegers)
model.item_in_bag = Var(model.items, model.bags, within=Binary)
# 定义约束条件
def weight_constraint(model, bag):
return sum(model.weight[i] * model.item_count[i] * model.item_in_bag[i, bag] for i in model.items) <= model.bag_weight_limit[bag]
model.weight_con = Constraint(model.bags, rule=weight_constraint)
def volume_constraint(model, bag):
return sum(model.volume[i] * model.item_count[i] * model.item_in_bag[i, bag] for i in model.items) <= model.bag_volume_limit[bag]
model.volume_con = Constraint(model.bags, rule=volume_constraint)
def length_constraint(model, bag):
return sum(model.length[i] * model.item_count[i] * model.item_in_bag[i, bag] for i in model.items) <= model.bag_length[bag]
model.length_con = Constraint(model.bags, rule=length_constraint)
def width_constraint(model, bag):
return sum(model.width[i] * model.item_count[i] * model.item_in_bag[i, bag] for i in model.items) <= model.bag_width[bag]
model.width_con = Constraint(model.bags, rule=width_constraint)
def height_constraint(model, bag):
return sum(model.height[i] * model.item_count[i] * model.item_in_bag[i, bag] for i in model.items) <= model.bag_height[bag]
model.height_con = Constraint(model.bags, rule=height_constraint)
def balance_constraint(model):
return sum(model.weight[i] * model.item_count[i] * model.item_in_bag[i, 1] for i in model.items) == sum(model.weight[i] * model.item_count[i] * model.item_in_bag[i, 2] for i in model.items)
model.balance_con = Constraint(rule=balance_constraint)
# 定义空间利用率
def utilization_rule(model):
return model.utilization == sum(model.volume[i] * model.item_count[i] * model.item_in_bag[i, bag] for i in model.items for bag in model.bags) / sum(model.bag_volume_limit[bag] for bag in model.bags)
model.utilization_con = Constraint(rule=utilization_rule)
# 定义目标函数
model.obj = Objective(expr=model.utilization, sense=maximize)
# 求解模型
solver = SolverFactory('glpk')
result = solver.solve(model)
# 输出结果
print('Objective value: ', model.obj())
for i in model.items:
for bag in model.bags:
if model.item_in_bag[i, bag]() > 0:
print('Item %s is in bag %d %d times' % (i, bag, model.item_count[i]()))
print('Utilization: ', model.utilization())
```
在这个例子中,我们定义了物品集合`items`、背包集合`bags`和空间利用率变量`utilization`。我们还定义了物品的属性`length`、`width`、`height`、`volume`、`weight`和`quantity`,以及背包的属性`bag_length`、`bag_width`、`bag_height`、`bag_volume_limit`和`bag_weight_limit`。我们使用变量`item_count`和`item_in_bag`表示每个物品在每个背包中的数量和是否被放入了背包中。我们设置了一系列约束条件,包括重量、体积、尺寸和平衡约束,以及空间利用率的计算公式。最后,我们定义了目标函数为最大化空间利用率,并使用求解器对模型进行求解。
运行代码后,我们可以得到最优的装载方案和空间利用率。注意,由于Pyomo的一些限制,我们需要将背包的数量和物品的数量都设为有限的,否则可能会出现求解器错误。
阅读全文