用pytorch写一个分类模型用于手势识别
时间: 2024-05-15 17:16:40 浏览: 82
以下是一个用PyTorch编写的手势识别分类模型的示例代码。
首先,我们需要导入必要的库:
``` python
import torch
import torch.nn as nn
import torch.optim as optim
import torchvision.transforms as transforms
from torchvision.datasets import ImageFolder
```
然后,我们可以定义一些超参数,例如批量大小、学习率等:
``` python
batch_size = 32
learning_rate = 0.001
num_epochs = 10
```
接下来,我们可以定义数据集和数据增强的转换:
``` python
data_transforms = transforms.Compose([
transforms.Resize((224, 224)),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225])
])
train_dataset = ImageFolder(root='./train/', transform=data_transforms)
valid_dataset = ImageFolder(root='./valid/', transform=data_transforms)
```
接下来,我们可以定义模型。在这个例子中,我们使用了预训练的ResNet18模型:
``` python
model = nn.Sequential(
nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, bias=False),
nn.BatchNorm2d(64),
nn.ReLU(inplace=True),
nn.MaxPool2d(kernel_size=3, stride=2, padding=1),
nn.Sequential(*list(torchvision.models.resnet18(pretrained=True).children())[4:-1]),
nn.AdaptiveAvgPool2d((1, 1)),
nn.Flatten(),
nn.Linear(512, 6)
)
```
然后,我们可以定义损失函数和优化器:
``` python
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(model.parameters(), lr=learning_rate)
```
最后,我们可以训练模型:
``` python
train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=batch_size, shuffle=True)
valid_loader = torch.utils.data.DataLoader(valid_dataset, batch_size=batch_size, shuffle=False)
for epoch in range(num_epochs):
model.train()
for images, labels in train_loader:
optimizer.zero_grad()
outputs = model(images)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
model.eval()
with torch.no_grad():
total = 0
correct = 0
for images, labels in valid_loader:
outputs = model(images)
_, predicted = torch.max(outputs.data, 1)
total += labels.size(0)
correct += (predicted == labels).sum().item()
accuracy = 100 * correct / total
print(f'Epoch [{epoch + 1}/{num_epochs}], Validation Accuracy: {accuracy:.2f}%')
```
希望这个示例代码能够帮助你开始构建自己的手势识别分类模型。
阅读全文