利用卷积神经网络,实现对mnist数据集的分类问题,使用pytorch
时间: 2023-06-04 12:08:02 浏览: 157
使用pytorch搭建卷积网络分类MINST数据集,通过改变网络层数和卷积核大小观察对最终分类准确性的影响,并可视化实验结果
5星 · 资源好评率100%
非常好的问题!我可以回答这个问题。对于mnist数据集的分类问题,我们可以使用卷积神经网络(CNN)来解决。在PyTorch中实现CNN非常简单,你只需要按照以下步骤:
1. 导入需要的库和模块
```
import torch
import torch.nn as nn
import torch.nn.functional as F
```
2. 定义CNN模型
```
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
self.conv1 = nn.Conv2d(in_channels=1, out_channels=6, kernel_size=5)
self.pool = nn.MaxPool2d(kernel_size=2, stride=2)
self.conv2 = nn.Conv2d(in_channels=6, out_channels=16, kernel_size=5)
self.fc1 = nn.Linear(in_features=16 * 4 * 4, out_features=120)
self.fc2 = nn.Linear(in_features=120, out_features=84)
self.fc3 = nn.Linear(in_features=84, out_features=10)
def forward(self, x):
x = self.pool(F.relu(self.conv1(x)))
x = self.pool(F.relu(self.conv2(x)))
x = x.view(-1, 16 * 4 * 4)
x = F.relu(self.fc1(x))
x = F.relu(self.fc2(x))
x = self.fc3(x)
return x
```
这里我们定义了一个简单的CNN模型,包括两个卷积层和三个全连接层。我们使用ReLU作为激活函数,并在卷积层之间使用max-pooling来减小输出尺寸。
3. 加载mnist数据集
```
trainset = torchvision.datasets.MNIST(root='./data', train=True,
download=True, transform=transforms.ToTensor())
trainloader = torch.utils.data.DataLoader(trainset, batch_size=32,
shuffle=True, num_workers=2)
```
这里我们使用torchvision库来加载mnist数据集,并使用transforms.ToTensor()将数据转换为PyTorch张量。我们还使用DataLoader来生成批数据,以便进行批量训练。
4. 定义优化器和损失函数
```
net = Net()
criterion = nn.CrossEntropyLoss()
optimizer = torch.optim.SGD(net.parameters(), lr=0.001, momentum=0.9)
```
我们使用交叉熵损失作为损失函数,并使用随机梯度下降(SGD)作为优化器。
5. 训练网络
```
for epoch in range(10): # loop over the dataset multiple times
running_loss = 0.0
for i, data in enumerate(trainloader, 0):
# get the inputs; data is a list of [inputs, labels]
inputs, labels = data
# zero the parameter gradients
optimizer.zero_grad()
# forward + backward + optimize
outputs = net(inputs)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
# print statistics
running_loss += loss.item()
if i % 2000 == 1999: # print every 2000 mini-batches
print('[%d, %5d] loss: %.3f' %
(epoch + 1, i + 1, running_loss / 2000))
running_loss = 0.0
print('Finished Training')
```
这里我们使用PyTorch的自动微分来计算梯度,并调用优化器更新权重。我们通过训练数据多次迭代来训练网络。
6. 测试网络
```
correct = 0
total = 0
with torch.no_grad():
for data in testloader:
images, labels = data
outputs = net(images)
_, predicted = torch.max(outputs.data, 1)
total += labels.size(0)
correct += (predicted == labels).sum().item()
print('Accuracy of the network on the 10000 test images: %d %%' % (
100 * correct / total))
```
这里我们使用测试数据集来测试训练过的神经网络的准确度。
希望这个回答能帮到你!
阅读全文