# Changing 'character' columns to factor/numeric sales_dataset$Platform=as.factor(sales_dataset$Platform) sales_dataset$Year_of_Release=as.numeric(sales_dataset$Year_of_Release) sales_dataset$Genre=as.factor(sales_dataset$Genre) sales_dataset$Publisher=as.factor(sales_dataset$Publisher) sales_dataset$Developer=as.factor(sales_dataset$Developer) sales_dataset$Rating=as.factor(sales_dataset$Rating)
时间: 2023-12-05 18:03:12 浏览: 94
这段代码是用来将数据集中的字符型列转换为因子型或数值型列的。其中,as.factor()函数将列转换为因子型,as.numeric()函数将列转换为数值型。在这段代码中,将数据集sales_dataset中的Platform、Year_of_Release、Genre、Publisher、Developer和Rating列分别转换为因子型或数值型列。这样转换的目的是为了便于后续的数据分析和建模。
相关问题
sys:1: DtypeWarning: Columns (7) have mixed types.Specify dtype option on import or set low_memory=False.
This warning message indicates that there are columns in the dataset that have mixed data types, such as numeric and string data types. This can cause issues with data analysis and modeling, so it is recommended to either specify the data type for these columns when importing the dataset or set the parameter "low_memory" to False to avoid this warning.
There is a excel that names Health_Data.csv, two columns of it named cholesterol and BMICat.Using decision Tree in Jupyter notebook to build a predictive model to ascertain if a person with a cholesterol level of 3 is mostly overweight.
Sure, here are the steps to build a decision tree model in Jupyter Notebook to predict if a person with a cholesterol level of 3 is mostly overweight using the Health_Data.csv file:
1. Import necessary libraries:
```python
import pandas as pd
from sklearn.tree import DecisionTreeClassifier, export_graphviz
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score
import graphviz
```
2. Load the dataset:
```python
data = pd.read_csv('Health_Data.csv')
```
3. Prepare the data for modeling:
```python
# Select the columns of interest
df = data[['cholesterol', 'BMICat']]
# Convert categorical column to numeric
df['BMICat'] = pd.factorize(df['BMICat'])[0]
# Split the data into training and testing sets
X_train, X_test, y_train, y_test = train_test_split(df[['cholesterol']], df['BMICat'], test_size=0.2, random_state=42)
```
4. Train the decision tree model:
```python
model = DecisionTreeClassifier()
model.fit(X_train, y_train)
```
5. Make predictions on the test set:
```python
y_pred = model.predict(X_test)
```
6. Evaluate the model's accuracy:
```python
accuracy = accuracy_score(y_test, y_pred)
print('Accuracy:', accuracy)
```
7. Visualize the decision tree:
```python
dot_data = export_graphviz(model, out_file=None,
feature_names=['cholesterol'],
class_names=['Normal Weight', 'Overweight'],
filled=True, rounded=True,
special_characters=True)
graph = graphviz.Source(dot_data)
graph
```
This will display a decision tree that shows the rules used by the model to predict if a person with a cholesterol level of 3 is mostly overweight.
阅读全文