请补全上述代码
时间: 2024-02-24 18:55:50 浏览: 58
代码不全.....
非常抱歉,我发现我的回答中有些地方没有完全补全代码。以下是完整的代码:
```
import gym
import math
import random
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from Q_net import Net
class Agent(object):
def __init__(self, **kwargs):
for key, value in kwargs.items():
setattr(self, key, value)
self.eval_net = Net(self.state_space_dim, self.action_space_dim)
self.optimizer = optim.Adam(self.eval_net.parameters(), lr=self.lr)
self.buffer = []
self.steps = 0
def act(self, s0):
self.steps += 1
epsi = self.epsi_low + (self.epsi_high - self.epsi_low) * (math.exp(-1.0 * self.steps / self.decay))
if random.random() < epsi:
a0 = random.randrange(self.action_space_dim)
else:
s0 = torch.tensor(s0, dtype=torch.float).view(1, -1)
# 根据状态选择最佳动作
with torch.no_grad():
q_values = self.eval_net(s0)
a0 = q_values.argmax(dim=1)
return a0
def put(self, *transition):
if len(self.buffer) == self.capacity:
self.buffer.pop(0)
self.buffer.append(transition)
def learn(self):
if (len(self.buffer)) < self.batch_size:
return
samples = random.sample(self.buffer, self.batch_size)
s0, a0, r1, s1 = zip(*samples)
s0 = torch.tensor(s0, dtype=torch.float)
a0 = torch.tensor(a0, dtype=torch.long).view(self.batch_size, -1)
r1 = torch.tensor(r1, dtype=torch.float).view(self.batch_size, -1)
s1 = torch.tensor(s1, dtype=torch.float)
loss_fn = nn.MSELoss()
# 定义损失函数
q_next = self.eval_net(s1).max(dim=1, keepdim=True)[0].detach()
q_target = r1 + self.gamma * q_next
q_eval = self.eval_net(s0).gather(1, a0)
loss = loss_fn(q_eval, q_target)
self.optimizer.zero_grad()
loss.backward()
self.optimizer.step()
```
希望这次的回答能够帮助到您,如有疑问请随时提问。
阅读全文