采用前向贪心算法实现的基于粗糙集的属性约简的python
时间: 2023-10-28 16:05:53 浏览: 82
以下是一个基于粗糙集的属性约简算法的Python实现,采用了前向贪心算法:
```python
import pandas as pd
import numpy as np
class RoughSetReduction:
def __init__(self, data):
self.data = data
self.attributes = self.data.columns[:-1]
self.decision = self.data.columns[-1]
# 计算属性重要性
def importance(self, A):
B = list(set(self.attributes) - set(A))
a = len(self.data[self.data[self.decision] == 1])
b = len(self.data[self.data[self.decision] == 0])
a1 = len(self.data[(self.data[self.decision] == 1) & (self.data[A].apply(lambda x: all(i == 1 for i in x)), axis=1)])
a2 = len(self.data[(self.data[self.decision] == 1) & (self.data[B].apply(lambda x: all(i == 1 for i in x)), axis=1)])
b1 = len(self.data[(self.data[self.decision] == 0) & (self.data[A].apply(lambda x: all(i == 1 for i in x)), axis=1)])
b2 = len(self.data[(self.data[self.decision] == 0) & (self.data[B].apply(lambda x: all(i == 1 for i in x)), axis=1)])
return (a1 / a) - (a2 / a) - (b1 / b) + (b2 / b)
# 进行属性约简
def reduction(self):
A = []
while True:
max_importance = -np.inf
max_attribute = None
for attr in list(set(self.attributes) - set(A)):
cur_importance = self.importance(A + [attr])
if cur_importance > max_importance:
max_importance = cur_importance
max_attribute = attr
if max_attribute is None:
break
A.append(max_attribute)
return A
```
其中,`data`是数据集,`attributes`是属性集合,`decision`是决策属性。在`importance`方法中,通过计算`A`属性集合对决策属性的重要性来进行属性重要性的评估。在`reduction`方法中,通过不断加入重要性最高的属性,直到无法继续增加重要性为止,得到属性约简的结果。
阅读全文