resnet18 pytorch CPU项目代码
时间: 2023-05-30 13:07:08 浏览: 207
以下是一个简单的ResNet18 PyTorch CPU项目代码示例:
```python
import torch
import torch.nn as nn
import torch.optim as optim
import torchvision.datasets as datasets
import torchvision.transforms as transforms
from torch.utils.data import DataLoader
# 定义超参数
batch_size = 64
num_epochs = 10
# 加载数据集并进行预处理
train_data = datasets.CIFAR10(root='data', train=True, transform=transforms.ToTensor(), download=True)
test_data = datasets.CIFAR10(root='data', train=False, transform=transforms.ToTensor(), download=True)
train_loader = DataLoader(train_data, batch_size=batch_size, shuffle=True)
test_loader = DataLoader(test_data, batch_size=batch_size, shuffle=False)
# 定义ResNet18模型
class ResNet18(nn.Module):
def __init__(self, num_classes=10):
super(ResNet18, self).__init__()
self.conv1 = nn.Conv2d(3, 64, kernel_size=3, stride=1, padding=1, bias=False)
self.bn1 = nn.BatchNorm2d(64)
self.relu = nn.ReLU(inplace=True)
self.layer1 = nn.Sequential(
nn.Conv2d(64, 64, kernel_size=3, stride=1, padding=1, bias=False),
nn.BatchNorm2d(64),
nn.ReLU(inplace=True),
nn.Conv2d(64, 64, kernel_size=3, stride=1, padding=1, bias=False),
nn.BatchNorm2d(64)
)
self.layer2 = nn.Sequential(
nn.Conv2d(64, 128, kernel_size=3, stride=2, padding=1, bias=False),
nn.BatchNorm2d(128),
nn.ReLU(inplace=True),
nn.Conv2d(128, 128, kernel_size=3, stride=1, padding=1, bias=False),
nn.BatchNorm2d(128)
)
self.layer3 = nn.Sequential(
nn.Conv2d(128, 256, kernel_size=3, stride=2, padding=1, bias=False),
nn.BatchNorm2d(256),
nn.ReLU(inplace=True),
nn.Conv2d(256, 256, kernel_size=3, stride=1, padding=1, bias=False),
nn.BatchNorm2d(256)
)
self.layer4 = nn.Sequential(
nn.Conv2d(256, 512, kernel_size=3, stride=2, padding=1, bias=False),
nn.BatchNorm2d(512),
nn.ReLU(inplace=True),
nn.Conv2d(512, 512, kernel_size=3, stride=1, padding=1, bias=False),
nn.BatchNorm2d(512)
)
self.avgpool = nn.AdaptiveAvgPool2d((1, 1))
self.fc = nn.Linear(512, num_classes)
def forward(self, x):
x = self.conv1(x)
x = self.bn1(x)
x = self.relu(x)
x = self.layer1(x) + x
x = self.layer2(x) + x
x = self.layer3(x) + x
x = self.layer4(x) + x
x = self.avgpool(x)
x = x.view(x.size(0), -1)
x = self.fc(x)
return x
# 实例化模型并定义损失函数和优化器
model = ResNet18()
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(model.parameters(), lr=0.001)
# 训练模型
for epoch in range(num_epochs):
for i, (images, labels) in enumerate(train_loader):
optimizer.zero_grad()
outputs = model(images)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
# 在训练集和测试集上进行评估
correct = 0
total = 0
model.eval()
with torch.no_grad():
for images, labels in train_loader:
outputs = model(images)
_, predicted = torch.max(outputs.data, 1)
total += labels.size(0)
correct += (predicted == labels).sum().item()
train_acc = 100 * correct / total
correct = 0
total = 0
for images, labels in test_loader:
outputs = model(images)
_, predicted = torch.max(outputs.data, 1)
total += labels.size(0)
correct += (predicted == labels).sum().item()
test_acc = 100 * correct / total
print('Epoch [{}/{}], Train Accuracy: {:.2f}%, Test Accuracy: {:.2f}%'.format(epoch+1, num_epochs, train_acc, test_acc))
```
在这个示例中,我们首先加载和预处理了CIFAR10数据集,然后定义了一个ResNet18模型。我们使用交叉熵损失和Adam优化器来训练模型。在每个训练周期结束时,我们对模型在训练集和测试集上进行评估,并输出准确率。
阅读全文