将resource文件夹下面的1.txt,2.txt,3.txt三个文件里面的数据合并后按升序排

时间: 2024-05-03 21:17:55 浏览: 21
以下是Python代码实现: ```python file_list = ['1.txt', '2.txt', '3.txt'] # 文件列表 data_list = [] # 数据列表 for file_name in file_list: with open('resource/' + file_name, 'r') as f: data_list.extend(f.readlines()) # 将每个文件的数据添加到数据列表中 data_list = sorted(list(map(int, data_list))) # 将数据列表中的数据转换为整数并按升序排序 with open('merged.txt', 'w') as f: for data in data_list: f.write(str(data) + '\n') # 将排序后的数据写入新文件 merged.txt ``` 以上代码将 resource 文件夹下的 1.txt、2.txt、3.txt 三个文件中的数据合并到一个列表中,然后将列表中的数据转换为整数并按升序排序,最后将排序后的数据写入新文件 merged.txt 中。
相关问题

C语言实现将resource文件夹下面的1.txt,2.txt,3.txt三个文件里面的数据合并后按升序排

实现步骤如下: 1. 打开三个文件,读取文件中的数据,并将数据存储到一个数组中。 2. 关闭文件。 3. 对数组进行排序。 4. 打开一个新文件,将排序后的数据写入文件中。 5. 关闭文件。 下面是示例代码: ```c #include <stdio.h> #include <stdlib.h> #define MAX_SIZE 1000 int main() { int data[MAX_SIZE]; int size = 0; FILE *fp1, *fp2, *fp3, *fp_out; // 打开三个文件并读取数据 fp1 = fopen("resource/1.txt", "r"); if (fp1 == NULL) { printf("无法打开文件1.txt\n"); return 1; } while (fscanf(fp1, "%d", &data[size]) == 1) { size++; } fclose(fp1); fp2 = fopen("resource/2.txt", "r"); if (fp2 == NULL) { printf("无法打开文件2.txt\n"); return 1; } while (fscanf(fp2, "%d", &data[size]) == 1) { size++; } fclose(fp2); fp3 = fopen("resource/3.txt", "r"); if (fp3 == NULL) { printf("无法打开文件3.txt\n"); return 1; } while (fscanf(fp3, "%d", &data[size]) == 1) { size++; } fclose(fp3); // 排序 qsort(data, size, sizeof(int), cmp); // 打开输出文件并写入数据 fp_out = fopen("output.txt", "w"); if (fp_out == NULL) { printf("无法打开输出文件\n"); return 1; } for (int i = 0; i < size; i++) { fprintf(fp_out, "%d ", data[i]); } fclose(fp_out); return 0; } int cmp(const void *a, const void *b) { return (*(int*)a - *(int*)b); } ``` 需要注意的是,如果文件中的数据不是按照升序排列的,那么在排序时需要使用一个比较函数。上面的代码中使用了 qsort 函数和 cmp 函数进行排序。

1.将resource文件夹下面的1.txt,2.txt,3.txt三个文件里面的数据合并后按升序排列,并将排序结果存储在result.txt文件中,result.txt存储格式与原txt文件相同(数字之间用空格分隔)。 要求:用你能想到的最快的方式升序排列,写出思路和相应的C语言实现代码

思路: 1.读取1.txt,2.txt,3.txt文件中的数据存储到数组中 2.将数组中的数据使用快速排序算法(时间复杂度O(nlogn))排序 3.将排序后的数据写入result.txt文件中 C语言实现代码如下: ```c #include <stdio.h> #include <stdlib.h> #define MAX_SIZE 1000000 // 快速排序算法 void quickSort(int arr[], int left, int right) { int i, j, temp, pivot; if (left < right) { pivot = arr[left]; i = left; j = right; while (i < j) { while (i < j && arr[j] >= pivot) j--; if (i < j) { temp = arr[i]; arr[i] = arr[j]; arr[j] = temp; i++; } while (i < j && arr[i] <= pivot) i++; if (i < j) { temp = arr[i]; arr[i] = arr[j]; arr[j] = temp; j--; } } arr[i] = pivot; quickSort(arr, left, i - 1); quickSort(arr, i + 1, right); } } int main() { FILE *fp1, *fp2, *fp3, *fp4; int arr[MAX_SIZE]; int i, j, k, num1, num2, num3, num; // 打开1.txt,2.txt,3.txt和result.txt文件 fp1 = fopen("resource/1.txt", "r"); fp2 = fopen("resource/2.txt", "r"); fp3 = fopen("resource/3.txt", "r"); fp4 = fopen("resource/result.txt", "w"); // 读取1.txt文件中的数据 i = 0; while (fscanf(fp1, "%d", &num1) != EOF) { arr[i++] = num1; } num = i; // 读取2.txt文件中的数据 while (fscanf(fp2, "%d", &num2) != EOF) { arr[i++] = num2; } num += i - num; // 读取3.txt文件中的数据 while (fscanf(fp3, "%d", &num3) != EOF) { arr[i++] = num3; } num += i - num; // 使用快速排序算法对数组进行排序 quickSort(arr, 0, num - 1); // 将排序后的数据写入result.txt文件中 for (j = 0; j < num; j++) { fprintf(fp4, "%d ", arr[j]); } // 关闭文件 fclose(fp1); fclose(fp2); fclose(fp3); fclose(fp4); return 0; } ``` 注意事项: 1.需要在resource文件夹下创建1.txt,2.txt,3.txt文件,并且在文件中存储需要排序的数字,每个数字之间使用空格分隔。 2.程序只能处理数字之间使用空格分隔的情况,如果数字之间使用其他字符分隔,需要在程序中进行相应的修改。

相关推荐

最新推荐

recommend-type

解决idea打包成功但是resource下的文件没有成功的问题

在开发Java应用时,...正确设置后,项目中的配置文件、图片等资源将能够随程序一同部署,从而保证程序的正常运行。记住,对于不同的项目,可能需要根据具体资源文件类型进行调整,确保所有必要的文件都得到包含。
recommend-type

vue如何从接口请求数据

Vue如何从接口请求数据 在本文中,我们将介绍如何使用Vue.js从接口请求数据,并将其应用于实际项目中。通过本文,您将了解到如何使用Vue.js的生命周期钩子函数、methods、数据绑定等概念来实现数据请求和处理。 ...
recommend-type

spring无法读取properties文件数据问题详解

Spring 无法读取 properties ...Spring 无法读取 properties 文件数据问题可能是由于配置文件路径不正确、配置文件不存在或多个配置文件导致的。通过正确配置配置文件的路径和加载所有的配置文件,可以解决这些问题。
recommend-type

LTE RRC 协议中文版 36.331

2. 规范性引用文件:列举了相关的标准和规范。 3. 术语、定义和缩略语:解释了 LTE RRC 协议中的关键术语和缩略语。 4. 概述:概括了 LTE RRC 协议的总体架构和功能。 5. 过程:详细介绍了 LTE RRC 协议的各个过程,...
recommend-type

Oracle 11gR2创建PASSWORD_VERIFY_FUNCTION对应密码复杂度验证函数步骤.doc

2. **创建资源文件(PROFILE)**: 在PL/SQL环境中,使用`CREATE PROFILE`语句创建一个新的资源文件。这个文件定义了用户可以使用的各种资源限制,包括登录失败次数、密码过期时间等。例如,你可以创建一个名为`...
recommend-type

基于单片机的瓦斯监控系统硬件设计.doc

"基于单片机的瓦斯监控系统硬件设计" 在煤矿安全生产中,瓦斯监控系统扮演着至关重要的角色,因为瓦斯是煤矿井下常见的有害气体,高浓度的瓦斯不仅会降低氧气含量,还可能引发爆炸事故。基于单片机的瓦斯监控系统是一种现代化的监测手段,它能够实时监测瓦斯浓度并及时发出预警,保障井下作业人员的生命安全。 本设计主要围绕以下几个关键知识点展开: 1. **单片机技术**:单片机(Microcontroller Unit,MCU)是系统的核心,它集成了CPU、内存、定时器/计数器、I/O接口等多种功能,通过编程实现对整个系统的控制。在瓦斯监控器中,单片机用于采集数据、处理信息、控制报警系统以及与其他模块通信。 2. **瓦斯气体检测**:系统采用了气敏传感器来检测瓦斯气体的浓度。气敏传感器是一种对特定气体敏感的元件,它可以将气体浓度转换为电信号,供单片机处理。在本设计中,选择合适的气敏传感器至关重要,因为它直接影响到检测的精度和响应速度。 3. **模块化设计**:为了便于系统维护和升级,单片机被设计成模块化结构。每个功能模块(如传感器接口、报警系统、电源管理等)都独立运行,通过单片机进行协调。这种设计使得系统更具有灵活性和扩展性。 4. **报警系统**:当瓦斯浓度达到预设的危险值时,系统会自动触发报警装置,通常包括声音和灯光信号,以提醒井下工作人员迅速撤离。报警阈值可根据实际需求进行设置,并且系统应具有一定的防误报能力。 5. **便携性和安全性**:考虑到井下环境,系统设计需要注重便携性,体积小巧,易于携带。同时,系统的外壳和内部电路设计必须符合矿井的安全标准,能抵抗井下潮湿、高温和电磁干扰。 6. **用户交互**:系统提供了灵敏度调节和检测强度调节功能,使得操作员可以根据井下环境变化进行参数调整,确保监控的准确性和可靠性。 7. **电源管理**:由于井下电源条件有限,瓦斯监控系统需具备高效的电源管理,可能包括电池供电和节能模式,确保系统长时间稳定工作。 通过以上设计,基于单片机的瓦斯监控系统实现了对井下瓦斯浓度的实时监测和智能报警,提升了煤矿安全生产的自动化水平。在实际应用中,还需要结合软件部分,例如数据采集、存储和传输,以实现远程监控和数据分析,进一步提高系统的综合性能。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

:Python环境变量配置从入门到精通:Win10系统下Python环境变量配置完全手册

![:Python环境变量配置从入门到精通:Win10系统下Python环境变量配置完全手册](https://img-blog.csdnimg.cn/20190105170857127.png?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L3FxXzI3Mjc2OTUx,size_16,color_FFFFFF,t_70) # 1. Python环境变量简介** Python环境变量是存储在操作系统中的特殊变量,用于配置Python解释器和
recommend-type

electron桌面壁纸功能

Electron是一个开源框架,用于构建跨平台的桌面应用程序,它基于Chromium浏览器引擎和Node.js运行时。在Electron中,你可以很容易地处理桌面环境的各个方面,包括设置壁纸。为了实现桌面壁纸的功能,你可以利用Electron提供的API,如`BrowserWindow` API,它允许你在窗口上设置背景图片。 以下是一个简单的步骤概述: 1. 导入必要的模块: ```javascript const { app, BrowserWindow } = require('electron'); ``` 2. 在窗口初始化时设置壁纸: ```javas
recommend-type

基于单片机的流量检测系统的设计_机电一体化毕业设计.doc

"基于单片机的流量检测系统设计文档主要涵盖了从系统设计背景、硬件电路设计、软件设计到实际的焊接与调试等全过程。该系统利用单片机技术,结合流量传感器,实现对流体流量的精确测量,尤其适用于工业过程控制中的气体流量检测。" 1. **流量检测系统背景** 流量是指单位时间内流过某一截面的流体体积或质量,分为瞬时流量(体积流量或质量流量)和累积流量。流量测量在热电、石化、食品等多个领域至关重要,是过程控制四大参数之一,对确保生产效率和安全性起到关键作用。自托里拆利的差压式流量计以来,流量测量技术不断发展,18、19世纪出现了多种流量测量仪表的初步形态。 2. **硬件电路设计** - **总体方案设计**:系统以单片机为核心,配合流量传感器,设计显示单元和报警单元,构建一个完整的流量检测与监控系统。 - **工作原理**:单片机接收来自流量传感器的脉冲信号,处理后转化为流体流量数据,同时监测气体的压力和温度等参数。 - **单元电路设计** - **单片机最小系统**:提供系统运行所需的电源、时钟和复位电路。 - **显示单元**:负责将处理后的数据以可视化方式展示,可能采用液晶显示屏或七段数码管等。 - **流量传感器**:如涡街流量传感器或电磁流量传感器,用于捕捉流量变化并转换为电信号。 - **总体电路**:整合所有单元电路,形成完整的硬件设计方案。 3. **软件设计** - **软件端口定义**:分配单片机的输入/输出端口,用于与硬件交互。 - **程序流程**:包括主程序、显示程序和报警程序,通过流程图详细描述了每个程序的执行逻辑。 - **软件调试**:通过调试工具和方法确保程序的正确性和稳定性。 4. **硬件电路焊接与调试** - **焊接方法与注意事项**:强调焊接技巧和安全事项,确保电路连接的可靠性。 - **电路焊接与装配**:详细步骤指导如何组装电路板和连接各个部件。 - **电路调试**:使用仪器设备检查电路性能,排除故障,验证系统功能。 5. **系统应用与意义** 随着技术进步,单片机技术、传感器技术和微电子技术的结合使得流量检测系统具备更高的精度和可靠性,对于优化工业生产过程、节约资源和提升经济效益有着显著作用。 6. **结论与致谢** 文档结尾部分总结了设计成果,对参与项目的人表示感谢,并可能列出参考文献以供进一步研究。 7. **附录** 包含程序清单和电路总图,提供了具体实现细节和设计蓝图。 此设计文档为一个完整的机电一体化毕业设计项目,详细介绍了基于单片机的流量检测系统从概念到实施的全过程,对于学习单片机应用和流量测量技术的读者具有很高的参考价值。