r lstm模型预测天气代码
时间: 2023-08-04 22:07:09 浏览: 88
好的,下面是使用LSTM模型进行天气预测的Python代码示例,供您参考:
```python
import numpy as np
import pandas as pd
from keras.models import Sequential
from keras.layers import Dense, LSTM
# 读取历史气温数据
data = pd.read_csv('temperature.csv')
data = data.iloc[:, 1:].values
# 数据预处理
train_data = data[:-60] # 使用前两个月的数据作为训练数据
test_data = data[-60:] # 使用最后两个月的数据作为测试数据
train_x, train_y = [], []
test_x, test_y = [], []
timesteps = 3 # 设置时间步长为3
for i in range(timesteps, len(train_data)):
train_x.append(train_data[i-timesteps:i, 0])
train_y.append(train_data[i, 0])
for i in range(timesteps, len(test_data)):
test_x.append(test_data[i-timesteps:i, 0])
test_y.append(test_data[i, 0])
train_x, train_y = np.array(train_x), np.array(train_y)
test_x, test_y = np.array(test_x), np.array(test_y)
train_x = np.reshape(train_x, (train_x.shape[0], train_x.shape[1], 1))
test_x = np.reshape(test_x, (test_x.shape[0], test_x.shape[1], 1))
# 构建LSTM模型
model = Sequential()
model.add(LSTM(units=50, return_sequences=True, input_shape=(train_x.shape[1], 1)))
model.add(LSTM(units=50))
model.add(Dense(units=1))
model.compile(optimizer='adam', loss='mean_squared_error')
model.fit(train_x, train_y, epochs=100, batch_size=32)
# 对最后两个月的气温进行预测
predictions = model.predict(test_x)
predictions = predictions.reshape(-1)
# 可视化结果
import matplotlib.pyplot as plt
plt.plot(test_y, label='True')
plt.plot(predictions, label='Predicted')
plt.legend()
plt.show()
```
其中,`temperature.csv`是历史气温数据文件,前两个月的数据作为训练数据,最后两个月的数据作为测试数据,时间步长设置为3,使用LSTM模型进行训练和预测,最后使用matplotlib库可视化预测结果。
阅读全文