faster rcnn原理讲解
时间: 2023-09-24 20:07:48 浏览: 122
一位算法工程师从30+场秋招面试中总结出的超强面经——目标检测篇(含答案)1
Faster R-CNN是一种目标检测算法,其基本思想是利用RPN(Region Proposal Network)提取出图像中可能包含目标的框框,然后对这些框框进行CNN特征提取并输出目标类别。具体来说,Faster R-CNN包含两个部分:Region Proposal Network(RPN)和Fast R-CNN Detector。首先,RPN在输入图像上生成多个位置和尺度的候选区域,同时对每个区域进行二分类,即是目标还是背景,以及回归,即预测该区域与实际目标框之间的偏差。然后,利用这些生成的候选区域与卷积特征图进行ROI Pooling来提取使性能达到最佳的特征表示。接着,Fast R-CNN detector利用这些特征来进行目标类别的分类和目标框的回归,从而完成目标检测任务。Faster R-CNN算法相比于之前的算法精度更高,同时速度也更快。
阅读全文