用sigmoid算法实现前馈神经网络的代码

时间: 2024-06-16 21:07:38 浏览: 16
当使用sigmoid算法实现前馈神经网络时,需要进行以下几个步骤: 1. 初始化参数:初始化权重和偏置值,可以使用随机数或者其他方法进行初始化。 2. 前向传播:通过计算每一层的加权输入和激活函数的输出,将输入数据从输入层传递到输出层。 3. 计算损失:根据预测值和真实值之间的差异,计算损失函数的值。 4. 反向传播:根据损失函数的值,计算每一层的梯度,并更新参数。 5. 重复步骤2-4,直到达到预定的迭代次数或者损失函数收敛。 下面是一个简单的用sigmoid算法实现前馈神经网络的代码示例: ```python import numpy as np # 定义sigmoid函数 def sigmoid(x): return 1 / (1 + np.exp(-x)) # 初始化参数 def initialize_parameters(layer_dims): parameters = {} L = len(layer_dims) for l in range(1, L): parameters['W' + str(l)] = np.random.randn(layer_dims[l], layer_dims[l-1]) * 0.01 parameters['b' + str(l)] = np.zeros((layer_dims[l], 1)) return parameters # 前向传播 def forward_propagation(X, parameters): caches = [] A = X L = len(parameters) // 2 for l in range(1, L): Z = np.dot(parameters['W' + str(l)], A) + parameters['b' + str(l)] A = sigmoid(Z) caches.append((Z, A)) ZL = np.dot(parameters['W' + str(L)], A) + parameters['b' + str(L)] AL = sigmoid(ZL) caches.append((ZL, AL)) return AL, caches # 计算损失 def compute_cost(AL, Y): m = Y.shape cost = -np.sum(Y * np.log(AL) + (1 - Y) * np.log(1 - AL)) / m cost = np.squeeze(cost) return cost # 反向传播 def backward_propagation(AL, Y, caches): grads = {} L = len(caches) m = AL.shape Y = Y.reshape(AL.shape) dAL = - (np.divide(Y, AL) - np.divide(1 - Y, 1 - AL)) dZL = dAL * sigmoid(caches[L-1]) * (1 - sigmoid(caches[L-1])) grads['dW' + str(L)] = np.dot(dZL, caches[L-1].T) / m grads['db' + str(L)] = np.sum(dZL, axis=1, keepdims=True) / m for l in reversed(range(L-1)): dA = np.dot(parameters['W' + str(l+2)].T, dZ) dZ = dA * sigmoid(caches[l]) * (1 - sigmoid(caches[l])) grads['dW' + str(l+1)] = np.dot(dZ, caches[l].T) / m grads['db' + str(l+1)] = np.sum(dZ, axis=1, keepdims=True) / m return grads # 更新参数 def update_parameters(parameters, grads, learning_rate): L = len(parameters) // 2 for l in range(L): parameters['W' + str(l+1)] -= learning_rate * grads['dW' + str(l+1)] parameters['b' + str(l+1)] -= learning_rate * grads['db' + str(l+1)] return parameters # 定义前馈神经网络模型 def model(X, Y, layer_dims, learning_rate, num_iterations): parameters = initialize_parameters(layer_dims) for i in range(num_iterations): AL, caches = forward_propagation(X, parameters) cost = compute_cost(AL, Y) grads = backward_propagation(AL, Y, caches) parameters = update_parameters(parameters, grads, learning_rate) if i % 100 == 0: print("Cost after iteration {}: {}".format(i, cost)) return parameters # 示例数据 X = np.array([[0, 0, 1, 1], [0, 1, 0, 1]]) Y = np.array([[0, 1, 1, 0]]) # 定义神经网络结构 layer_dims = [2, 4, 1] # 训练模型 parameters = model(X, Y, layer_dims, learning_rate=0.01, num_iterations=1000) ``` 这段代码实现了一个简单的前馈神经网络,其中使用了sigmoid函数作为激活函数。你可以根据自己的需求进行修改和扩展。希望对你有帮助!

相关推荐

最新推荐

recommend-type

BP神经网络原理及Python实现代码

BP(Back Propagation)神经网络是一种基于梯度下降的监督学习算法,主要用于多层前馈神经网络的训练。它的核心思想是通过反向传播误差来更新网络权重,使得网络的预测结果逐渐接近实际目标值。BP神经网络通常包括...
recommend-type

基于python的BP神经网络及异或实现过程解析

BP神经网络,全称为Backpropagation Neural Network,是一种在机器学习领域广泛应用的多层前馈神经网络。它的主要特点是通过反向传播算法来调整权重,从而优化网络的性能。在这个基于Python的BP神经网络实现中,我们...
recommend-type

神经网络参数更新公式推导(一).docx

3. 多层前馈神经网络阶段;4. 误差逆向传播算法阶段。在早期的感知机阶段,只有一个 MP 神经元,不能处理非线性问题,解决方法是增加 MP 神经元的数量,例如增加一层神经元。但是,这也带来了两个新的问题:问题 1. ...
recommend-type

人工神经网络,BP神经网络算法

梯度下降算法是机器学习中广泛使用的优化方法,尤其在神经网络的训练过程中。它通过迭代的方式沿着损失函数梯度的负方向更新参数,以寻找使损失函数最小化的参数值。在BP神经网络中,梯度下降算法帮助网络逐步调整...
recommend-type

BP神经网络讲义 BP算法基本原理

BP神经网络,全称为Back Propagation Neural Network,是由Rumelhart和McClelland于1985年提出的一种在多层前馈神经网络中应用的学习算法。BP算法的核心是误差反向传播,即通过计算输出层的误差,并将误差沿着网络...
recommend-type

BSC关键绩效财务与客户指标详解

BSC(Balanced Scorecard,平衡计分卡)是一种战略绩效管理系统,它将企业的绩效评估从传统的财务维度扩展到非财务领域,以提供更全面、深入的业绩衡量。在提供的文档中,BSC绩效考核指标主要分为两大类:财务类和客户类。 1. 财务类指标: - 部门费用的实际与预算比较:如项目研究开发费用、课题费用、招聘费用、培训费用和新产品研发费用,均通过实际支出与计划预算的百分比来衡量,这反映了部门在成本控制上的效率。 - 经营利润指标:如承保利润、赔付率和理赔统计,这些涉及保险公司的核心盈利能力和风险管理水平。 - 人力成本和保费收益:如人力成本与计划的比例,以及标准保费、附加佣金、续期推动费用等与预算的对比,评估业务运营和盈利能力。 - 财务效率:包括管理费用、销售费用和投资回报率,如净投资收益率、销售目标达成率等,反映公司的财务健康状况和经营效率。 2. 客户类指标: - 客户满意度:通过包装水平客户满意度调研,了解产品和服务的质量和客户体验。 - 市场表现:通过市场销售月报和市场份额,衡量公司在市场中的竞争地位和销售业绩。 - 服务指标:如新契约标保完成度、续保率和出租率,体现客户服务质量和客户忠诚度。 - 品牌和市场知名度:通过问卷调查、公众媒体反馈和总公司级评价来评估品牌影响力和市场认知度。 BSC绩效考核指标旨在确保企业的战略目标与财务和非财务目标的平衡,通过量化这些关键指标,帮助管理层做出决策,优化资源配置,并驱动组织的整体业绩提升。同时,这份指标汇总文档强调了财务稳健性和客户满意度的重要性,体现了现代企业对多维度绩效管理的重视。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【实战演练】俄罗斯方块:实现经典的俄罗斯方块游戏,学习方块生成和行消除逻辑。

![【实战演练】俄罗斯方块:实现经典的俄罗斯方块游戏,学习方块生成和行消除逻辑。](https://p3-juejin.byteimg.com/tos-cn-i-k3u1fbpfcp/70a49cc62dcc46a491b9f63542110765~tplv-k3u1fbpfcp-zoom-in-crop-mark:1512:0:0:0.awebp) # 1. 俄罗斯方块游戏概述** 俄罗斯方块是一款经典的益智游戏,由阿列克谢·帕基特诺夫于1984年发明。游戏目标是通过控制不断下落的方块,排列成水平线,消除它们并获得分数。俄罗斯方块风靡全球,成为有史以来最受欢迎的视频游戏之一。 # 2.
recommend-type

卷积神经网络实现手势识别程序

卷积神经网络(Convolutional Neural Network, CNN)在手势识别中是一种非常有效的机器学习模型。CNN特别适用于处理图像数据,因为它能够自动提取和学习局部特征,这对于像手势这样的空间模式识别非常重要。以下是使用CNN实现手势识别的基本步骤: 1. **输入数据准备**:首先,你需要收集或获取一组带有标签的手势图像,作为训练和测试数据集。 2. **数据预处理**:对图像进行标准化、裁剪、大小调整等操作,以便于网络输入。 3. **卷积层(Convolutional Layer)**:这是CNN的核心部分,通过一系列可学习的滤波器(卷积核)对输入图像进行卷积,以
recommend-type

绘制企业战略地图:从财务到客户价值的六步法

"BSC资料.pdf" 战略地图是一种战略管理工具,它帮助企业将战略目标可视化,确保所有部门和员工的工作都与公司的整体战略方向保持一致。战略地图的核心内容包括四个相互关联的视角:财务、客户、内部流程和学习与成长。 1. **财务视角**:这是战略地图的最终目标,通常表现为股东价值的提升。例如,股东期望五年后的销售收入达到五亿元,而目前只有一亿元,那么四亿元的差距就是企业的总体目标。 2. **客户视角**:为了实现财务目标,需要明确客户价值主张。企业可以通过提供最低总成本、产品创新、全面解决方案或系统锁定等方式吸引和保留客户,以实现销售额的增长。 3. **内部流程视角**:确定关键流程以支持客户价值主张和财务目标的实现。主要流程可能包括运营管理、客户管理、创新和社会责任等,每个流程都需要有明确的短期、中期和长期目标。 4. **学习与成长视角**:评估和提升企业的人力资本、信息资本和组织资本,确保这些无形资产能够支持内部流程的优化和战略目标的达成。 绘制战略地图的六个步骤: 1. **确定股东价值差距**:识别与股东期望之间的差距。 2. **调整客户价值主张**:分析客户并调整策略以满足他们的需求。 3. **设定价值提升时间表**:规划各阶段的目标以逐步缩小差距。 4. **确定战略主题**:识别关键内部流程并设定目标。 5. **提升战略准备度**:评估并提升无形资产的战略准备度。 6. **制定行动方案**:根据战略地图制定具体行动计划,分配资源和预算。 战略地图的有效性主要取决于两个要素: 1. **KPI的数量及分布比例**:一个有效的战略地图通常包含20个左右的指标,且在四个视角之间有均衡的分布,如财务20%,客户20%,内部流程40%。 2. **KPI的性质比例**:指标应涵盖财务、客户、内部流程和学习与成长等各个方面,以全面反映组织的绩效。 战略地图不仅帮助管理层清晰传达战略意图,也使员工能更好地理解自己的工作如何对公司整体目标产生贡献,从而提高执行力和组织协同性。