#include <iostream> #include <vector> using namespace std; int countEvenPoints(vector<vector<int>>& tree, int node) { int count = 0; // Count the number of even points in the subtree rooted at 'node' for (int child : tree[node]) { count += countEvenPoints(tree, child); } // Increment count if the current node is even if (tree[node].size() % 2 == 0) { count++; } return count; } int main() { int n; cin >> n; vector<vector<int>> tree(n + 1); // Adjacency list representation of the tree // Read the tree edges for (int i = 2; i <= n; i++) { int parent; cin >> parent; tree[parent].push_back(i); } int evenPoints = countEvenPoints(tree, 1); // Start counting even points from the root cout << evenPoints << endl; return 0; }这段代码的问题

时间: 2024-04-16 09:27:56 浏览: 18
这段代码看起来没有明显的问题。它使用递归的方式遍历树,并通过计算节点的子节点数量来判断节点的度数是否为偶数,然后累加偶数节点的数量。然后,它从根节点开始调用 `countEvenPoints` 函数来计算偶点的个数。 但是,这段代码对于边界情况没有进行处理。例如,如果输入的节点数 `n` 为 1,即只有根节点没有其他子节点,那么这段代码可能会导致数组越界错误。为了修复这个问题,可以在读取 `n` 后添加一个条件来处理这种情况,例如: ```cpp if (n == 1) { cout << "0" << endl; // 只有根节点,偶点个数为0 return 0; } ``` 除此之外,代码看起来是正确的,并且符合题目要求。如果你有其他问题或需要进一步的解释,请随时提问!
相关问题

#include<iostream> #include<vector> #include<algorithm> #include<string> using namespace std; struct Node { Node(double d, Node* l = NULL, Node* r = NULL, Node* f = NULL) :data(d), left(l), right(r), father(f) {} double data; Node* father, * left, * right; //父,左右孩子 string code; //存储编码 }; typedef Node* Tree; //通过中序,构建编码 void creatCode(Node* node, string s) { if (node != NULL) { creatCode(node->left, s + '0'); if (node->left == NULL && node->right == NULL) //是叶子节点就更新编码 node->code = s; creatCode(node->right, s + '1'); } } int main() { vector<double> w; vector<Node*> node; double tmp; Tree tree; cout << "输入权值,数字后紧跟回车结束:"; do { cin >> tmp; w.push_back(tmp); } while (getchar() != '\n'); sort(w.begin(), w.end(), greater<double>()); //降序排序 for (int i = 0; i < w.size(); i++) node.push_back(new Node(w[i])); vector<Node*> out = node; Node* left, * right; do { right = node.back(); node.pop_back(); //取出最小的两个 left = node.back(); node.pop_back(); node.push_back(new Node(left->data + right->data, left, right)); //将新结点(求和)推进数组中 left->father = node.back(); //更新父结点 right->father = node.back(); out.push_back(node.back()); //存储此结点 for (int i = node.size() - 1; i > 0 && node[i]->data > node[i - 1]->data; i--) //从末尾冒泡,排序 swap(node[i], node[i - 1]); } while (node.size() != 1); //构建树结构 tree = node.front(); //剩余的一个结点即根结点 creatCode(tree, ""); printf("结点\t父结点\t左孩子\t右孩子\t编码\n"); for (int i = 0; i < out.size(); i++) printf("%.2lf\t%.2lf\t%.2lf\t%.2lf\t%s\n", out[i]->data, out[i]->father == NULL ? 0 : out[i]->father->data, out[i]->left == NULL ? 0 : out[i]->left->data, out[i]->right == NULL ? 0 : out[i]->right->data, out[i]->code.c_str()); return 0; }根据代码写流程图

```mermaid graph TD; A(开始) --> B(定义结构体Node和树Tree); B --> C(定义函数creatCode); B --> D(定义主函数main); D --> E(定义变量w,node,tmp,tree); E --> F(输入权值,数字后紧跟回车结束); F --> G(获取输入的权值并降序排序); G --> H(依次创建Node结构体并存储到node数组中); H --> I(将node数组中最小的两个结点取出,求和后推进数组中); I --> J(更新父结点和左右孩子); J --> K(将新结点存储到out数组中); K --> L(对node数组进行冒泡排序); L --> M(重复执行I到L的步骤直到node数组中只剩一个结点); M --> N(将最后剩余的结点作为根结点); N --> O(构建树结构); O --> P(调用creatCode函数,通过中序遍历构建编码); P --> Q(输出各结点的信息); Q --> R(结束); ```

题目描述 "节点的度"指以该节点为端点的边的条数。"偶点"指度为偶数的节点。 给你一棵n个节点的有根树,节点标号为1~n,1号节点为根节点。特别的,每个点的子节点个数不超过5。 请你输出该树中偶点的个数。 输入 第一行一个整数n。 以后n行,每行若干个整数。第i行,第一个数为mi,表示节点i的子节点个数。紧接着mi个整数,表示节点i子节点的编号。保证父节点编号小于子节点。 输出 一行一个整数,表示偶点个数。c++

#include <iostream> #include <vector> using namespace std; int countEvenNodes(vector<vector<int>>& tree, int node) { int count = 0; if (tree[node].size() == 0) { // leaf node return 1; } for (int child : tree[node]) { count += countEvenNodes(tree, child); } if (count % 2 == 0) { count++; // add the current node if the count is even } return count; } int main() { int n; cin >> n; vector<vector<int>> tree(n + 1); // 1-indexed tree // Read the tree edges for (int i = 1; i <= n; i++) { int m; cin >> m; for (int j = 0; j < m; j++) { int child; cin >> child; tree[i].push_back(child); } } int evenNodes = countEvenNodes(tree, 1); cout << evenNodes << endl; return 0; }

相关推荐

题目描述 树的表示方法有多种,如图6_1采用的就是一种形象的树形表示法;另外还有一种常用的表示方法"括号表示法",它的表示方法归纳如下:先将整棵树的根结点放入一对圆括号中,然后把它的子树由左至右放入括号中,同层子树用圆括号括在一起(同层子树之间用逗号隔开),而对子树也采用同样的方法处理,直到所有的子树都只有一个根结点为止。用括号表示法表示图6_1的步骤如下: =(T) =(1(T1,T2 ,T3 )) {1是根结点,有3棵子树,用逗号隔开} =(1(2(T11,T12),3,4(T31))) {分别对3棵子树做同样的操作} =(1(2(5,6),3,4(7(T311,T312)))) =(1(2(5,6),3,4(7(8,9)))) 实际上,以上方法是按照树的层次逐步展开,直到所有结点都已列出。 注意,当一个节点有若干个子树时,子节点编号小的写在前面,编号大的写在后面。 给你一棵n个节点的有根树,节点标号为1~n,1号节点为根节点。 请给出它的括号表示结果。 输入 第一行一个整数n。 以后n行,每行若干个整数。第i行,第一个数为mi,表示节点i的子节点个数。紧接着mi个整数,表示节点i子节点的编号。保证父节点编号小于子节点。 输出 一行一个字符串,由数字、括号、逗号组成。表示括号表示的结果。注意不包含多余空格。 样例 输入 复制 3 2 2 3 0 0 输出 复制 (1(2,3)) 请用c++语言解决此问题

最新推荐

recommend-type

node-v0.8.10-sunos-x64.tar.gz

Node.js,简称Node,是一个开源且跨平台的JavaScript运行时环境,它允许在浏览器外运行JavaScript代码。Node.js于2009年由Ryan Dahl创立,旨在创建高性能的Web服务器和网络应用程序。它基于Google Chrome的V8 JavaScript引擎,可以在Windows、Linux、Unix、Mac OS X等操作系统上运行。 Node.js的特点之一是事件驱动和非阻塞I/O模型,这使得它非常适合处理大量并发连接,从而在构建实时应用程序如在线游戏、聊天应用以及实时通讯服务时表现卓越。此外,Node.js使用了模块化的架构,通过npm(Node package manager,Node包管理器),社区成员可以共享和复用代码,极大地促进了Node.js生态系统的发展和扩张。 Node.js不仅用于服务器端开发。随着技术的发展,它也被用于构建工具链、开发桌面应用程序、物联网设备等。Node.js能够处理文件系统、操作数据库、处理网络请求等,因此,开发者可以用JavaScript编写全栈应用程序,这一点大大提高了开发效率和便捷性。 在实践中,许多大型企业和组织已经采用Node.js作为其Web应用程序的开发平台,如Netflix、PayPal和Walmart等。它们利用Node.js提高了应用性能,简化了开发流程,并且能更快地响应市场需求。
recommend-type

【课程设计】实现的金融风控贷款违约预测python源码.zip

【课程设计】实现的金融风控贷款违约预测python源码.zip
recommend-type

node-v0.10.27-x86.msi

Node.js,简称Node,是一个开源且跨平台的JavaScript运行时环境,它允许在浏览器外运行JavaScript代码。Node.js于2009年由Ryan Dahl创立,旨在创建高性能的Web服务器和网络应用程序。它基于Google Chrome的V8 JavaScript引擎,可以在Windows、Linux、Unix、Mac OS X等操作系统上运行。 Node.js的特点之一是事件驱动和非阻塞I/O模型,这使得它非常适合处理大量并发连接,从而在构建实时应用程序如在线游戏、聊天应用以及实时通讯服务时表现卓越。此外,Node.js使用了模块化的架构,通过npm(Node package manager,Node包管理器),社区成员可以共享和复用代码,极大地促进了Node.js生态系统的发展和扩张。 Node.js不仅用于服务器端开发。随着技术的发展,它也被用于构建工具链、开发桌面应用程序、物联网设备等。Node.js能够处理文件系统、操作数据库、处理网络请求等,因此,开发者可以用JavaScript编写全栈应用程序,这一点大大提高了开发效率和便捷性。 在实践中,许多大型企业和组织已经采用Node.js作为其Web应用程序的开发平台,如Netflix、PayPal和Walmart等。它们利用Node.js提高了应用性能,简化了开发流程,并且能更快地响应市场需求。
recommend-type

课设毕设基于SSM的高校二手交易平台-LW+PPT+源码可运行.zip

课设毕设基于SSM的高校二手交易平台--LW+PPT+源码可运行
recommend-type

c++,冒险游戏,可供学习

冒险游戏,可供学习
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

实现实时数据湖架构:Kafka与Hive集成

![实现实时数据湖架构:Kafka与Hive集成](https://img-blog.csdnimg.cn/img_convert/10eb2e6972b3b6086286fc64c0b3ee41.jpeg) # 1. 实时数据湖架构概述** 实时数据湖是一种现代数据管理架构,它允许企业以低延迟的方式收集、存储和处理大量数据。与传统数据仓库不同,实时数据湖不依赖于预先定义的模式,而是采用灵活的架构,可以处理各种数据类型和格式。这种架构为企业提供了以下优势: - **实时洞察:**实时数据湖允许企业访问最新的数据,从而做出更明智的决策。 - **数据民主化:**实时数据湖使各种利益相关者都可
recommend-type

SPDK_NVMF_DISCOVERY_NQN是什么 有什么作用

SPDK_NVMF_DISCOVERY_NQN 是 SPDK (Storage Performance Development Kit) 中用于查询 NVMf (Non-Volatile Memory express over Fabrics) 存储设备名称的协议。NVMf 是一种基于网络的存储协议,可用于连接远程非易失性内存存储器。 SPDK_NVMF_DISCOVERY_NQN 的作用是让存储应用程序能够通过 SPDK 查询 NVMf 存储设备的名称,以便能够访问这些存储设备。通过查询 NVMf 存储设备名称,存储应用程序可以获取必要的信息,例如存储设备的IP地址、端口号、名称等,以便能
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。