#include <stdio.h>#define SAMPLE_RATE 1000 // 采样率#define WINDOW_SIZE 100 // 窗口大小int main() { int ecg_signal[10000]; // 假设有10000个采样点的心电图信号 int signal_length = 10000; int window_start = 0; int window_end = WINDOW_SIZE; int peak_index; int heart_rate; // 处理信号,找到QRS波峰 // 这里假设已经找到了QRS波峰的位置,存储在peak_index数组中 // 计算心率 while (window_end < signal_length) { int max_peak = 0; for (int i = window_start; i < window_end; i++) { if (ecg_signal[peak_index[i]] > max_peak) { max_peak = ecg_signal[peak_index[i]]; } } heart_rate = (int)(60.0 * SAMPLE_RATE / (peak_index[window_end - 1] - peak_index[window_start])); printf("心率为:%d\n", heart_rate); window_start += WINDOW_SIZE; window_end += WINDOW_SIZE; } return 0;}
时间: 2024-04-03 14:35:21 浏览: 55
根据您提供的代码,`window_start` 的含义是窗口(window)的起始位置,它的初始值为0。在处理心电图信号时,程序将信号分成多个窗口,每个窗口的大小为 `WINDOW_SIZE`。程序在每个窗口内找到QRS波峰,然后通过计算QRS波峰之间的时间间隔来计算心率。在每次迭代中,`window_start` 和 `window_end` 的值都会增加 `WINDOW_SIZE`,从而移动到下一个窗口的位置。
相关问题
已知三轴加速度数据,利用低通滤波,华东窗口以及波峰波谷的检测实现对步数的计步,C语言来写
以下是一个基于三轴加速度数据的计步算法示例,使用了低通滤波、华东窗口和波峰波谷检测。请注意,这是一个简单的示例,实际应用中可能需要根据具体情况进行调整和优化。
```c
#include <stdio.h>
#include <math.h>
#define SAMPLE_RATE 50 // 采样率,单位 Hz
#define WINDOW_SIZE 20 // 窗口大小,单位采样点
#define THRESHOLD_FACTOR 0.25 // 波峰波谷阈值系数
#define MIN_STEP_INTERVAL 300 // 最小步间隔,单位毫秒
// 低通滤波器
typedef struct {
double a1, a2, b0, b1, b2;
double x1, x2, y1, y2;
} LowPassFilter;
void initLowPassFilter(LowPassFilter* filter, double cutoffFreq) {
double omega = 2.0 * M_PI * cutoffFreq / SAMPLE_RATE;
double alpha = sin(omega) / (2.0 * 0.707);
double beta = sqrt(2.0) * alpha;
double a0 = 1.0 + beta + alpha * alpha;
filter->a1 = (2.0 * (alpha * alpha - 1.0)) / a0;
filter->a2 = (1.0 - beta + alpha * alpha) / a0;
filter->b0 = (alpha * alpha) / a0;
filter->b1 = (2.0 * alpha * alpha) / a0;
filter->b2 = (alpha * alpha) / a0;
filter->x1 = 0.0;
filter->x2 = 0.0;
filter->y1 = 0.0;
filter->y2 = 0.0;
}
double lowPassFilter(LowPassFilter* filter, double x) {
double y = filter->b0 * x + filter->b1 * filter->x1 + filter->b2 * filter->x2
- filter->a1 * filter->y1 - filter->a2 * filter->y2;
filter->x2 = filter->x1;
filter->x1 = x;
filter->y2 = filter->y1;
filter->y1 = y;
return y;
}
// 华东窗口
typedef struct {
double* buffer;
int size;
int head;
double sum;
} MovingWindow;
void initMovingWindow(MovingWindow* window, int size) {
window->buffer = (double*) malloc(size * sizeof(double));
window->size = size;
window->head = 0;
window->sum = 0.0;
}
void destroyMovingWindow(MovingWindow* window) {
free(window->buffer);
}
void addToMovingWindow(MovingWindow* window, double x) {
window->sum += x;
window->sum -= window->buffer[window->head];
window->buffer[window->head] = x;
window->head = (window->head + 1) % window->size;
}
double getMovingWindowAvg(MovingWindow* window) {
return window->sum / window->size;
}
// 波峰波谷检测状态
typedef enum {
STATE_IDLE,
STATE_RISING,
STATE_FALLING
} PeakDetectionState;
// 波峰波谷检测
typedef struct {
PeakDetectionState state;
double threshold;
double lastValue;
double lastPeak;
double lastValley;
} PeakDetector;
void initPeakDetector(PeakDetector* detector, double threshold) {
detector->state = STATE_IDLE;
detector->threshold = threshold;
detector->lastValue = 0.0;
detector->lastPeak = 0.0;
detector->lastValley = 0.0;
}
int updatePeakDetector(PeakDetector* detector, double value, double* peak, double* valley) {
switch (detector->state) {
case STATE_IDLE:
if (value > detector->lastValue + detector->threshold) {
detector->state = STATE_RISING;
detector->lastPeak = value;
*peak = value;
return 1;
} else if (value < detector->lastValue - detector->threshold) {
detector->state = STATE_FALLING;
detector->lastValley = value;
*valley = value;
return 1;
}
break;
case STATE_RISING:
if (value < detector->lastPeak) {
detector->state = STATE_FALLING;
detector->lastValley = value;
*valley = value;
return 1;
}
break;
case STATE_FALLING:
if (value > detector->lastValley) {
detector->state = STATE_RISING;
detector->lastPeak = value;
*peak = value;
return 1;
}
break;
}
detector->lastValue = value;
return 0;
}
// 计步器
typedef struct {
LowPassFilter filter;
MovingWindow window;
PeakDetector peakDetector;
int stepCount;
int lastStepTime;
} StepCounter;
void initStepCounter(StepCounter* counter) {
initLowPassFilter(&counter->filter, 5.0);
initMovingWindow(&counter->window, WINDOW_SIZE);
initPeakDetector(&counter->peakDetector, THRESHOLD_FACTOR * getMovingWindowAvg(&counter->window));
counter->stepCount = 0;
counter->lastStepTime = 0;
}
void destroyStepCounter(StepCounter* counter) {
destroyMovingWindow(&counter->window);
}
int updateStepCounter(StepCounter* counter, double x, double y, double z) {
double norm = sqrt(x * x + y * y + z * z);
double filtered = lowPassFilter(&counter->filter, norm);
addToMovingWindow(&counter->window, filtered);
double avg = getMovingWindowAvg(&counter->window);
double peak = 0.0, valley = 0.0;
if (updatePeakDetector(&counter->peakDetector, filtered - avg, &peak, &valley)) {
int interval = SAMPLE_RATE * (peak - valley) / norm;
if (interval > MIN_STEP_INTERVAL && counter->lastStepTime + interval < SAMPLE_RATE * 2) {
counter->stepCount++;
counter->lastStepTime += interval;
return 1;
}
}
return 0;
}
int main() {
// 假设有一组加速度数据 ax, ay, az,每秒50个样本
double ax[1000], ay[1000], az[1000];
// 初始化计步器
StepCounter counter;
initStepCounter(&counter);
// 处理加速度数据
for (int i = 0; i < 1000; i++) {
int step = updateStepCounter(&counter, ax[i], ay[i], az[i]);
if (step) {
printf("Step %d detected\n", counter.stepCount);
}
}
// 销毁计步器
destroyStepCounter(&counter);
return 0;
}
```
编写一个STM32控制ADS1256采集噪声进行FFT计算分贝程序,每秒采样25000
这是一个比较复杂的程序,需要涉及到STM32的SPI接口、ADS1256芯片的使用、以及FFT算法的实现。以下是一个简单的程序框架,可以作为参考:
```c
// 头文件
#include <stdio.h>
#include <math.h>
#include "stm32f4xx.h"
#include "ads1256.h"
#include "fft.h"
// 宏定义
#define SAMPLE_NUM 4096 // FFT大小
#define SAMPLE_RATE 25000 // Hz
#define ADC_VREF 5.0 // V
#define ADC_GAIN 1 // 增益
#define ADC_OFFSET 0 // 偏移
#define FFT_WINDOW_SIZE SAMPLE_NUM // 窗口大小
// 全局变量
volatile uint8_t adc_data_ready = 0;
volatile uint32_t adc_data[SAMPLE_NUM];
// 函数声明
void init_adc(void);
void init_timer(void);
void init_fft(void);
void process_adc_data(void);
void calculate_db(void);
// 主函数
int main(void)
{
// 初始化
init_adc();
init_timer();
init_fft();
while (1)
{
if (adc_data_ready)
{
process_adc_data();
calculate_db();
adc_data_ready = 0;
}
}
}
// 初始化ADC
void init_adc(void)
{
// 初始化ADS1256芯片
ads1256_init();
// 设置采样率和增益
ads1256_set_sample_rate(ADS_SAMPLE_RATE_25K);
ads1256_set_gain(ADC_GAIN);
// 开始连续采样
ads1256_start_continuous_conversion();
}
// 初始化定时器
void init_timer(void)
{
// 初始化定时器
// ...
// 设置定时器中断
// ...
}
// 初始化FFT
void init_fft(void)
{
// 初始化FFT
fft_init(SAMPLE_NUM, FFT_WINDOW_SIZE);
}
// 处理ADC数据
void process_adc_data(void)
{
// 读取ADC数据
ads1256_read_data(adc_data, SAMPLE_NUM);
// 去除偏移
for (int i = 0; i < SAMPLE_NUM; i++)
{
adc_data[i] -= ADC_OFFSET;
}
}
// 计算分贝
void calculate_db(void)
{
// 计算FFT
fft_real(adc_data);
// 计算功率谱密度
float psd[SAMPLE_NUM];
for (int i = 0; i < SAMPLE_NUM; i++)
{
float re = adc_data[i] / (float)SAMPLE_NUM;
float im = 0;
psd[i] = (re * re + im * im) * (ADC_VREF * ADC_VREF) / (float)(ADC_GAIN * ADC_GAIN);
}
// 计算分贝
float db[SAMPLE_NUM / 2];
for (int i = 0; i < SAMPLE_NUM / 2; i++)
{
db[i] = 10 * log10(psd[i]);
}
// 输出结果
for (int i = 0; i < SAMPLE_NUM / 2; i++)
{
printf("%f ", db[i]);
}
printf("\r\n");
}
// 定时器中断处理函数
void TIMx_IRQHandler(void)
{
if (TIM_GetITStatus(TIMx, TIM_IT_Update) != RESET)
{
TIM_ClearITPendingBit(TIMx, TIM_IT_Update);
adc_data_ready = 1;
}
}
```
上面的程序框架包括了初始化函数以及主要的处理函数。具体实现还需要结合相关的库函数和算法实现。需要注意的是,每秒采样25000的速率对于STM32来说是比较高的,需要根据实际情况对系统时钟、SPI时钟等进行配置,以保证采样率的准确性和稳定性。
阅读全文