用C++写这道题的代码:给定一个 n 个点 m 条边的不含重边和自环的无向图。 点的编号为 1∼n ,边的编号为 1∼m 。 在 t=0 时刻,你位于 1 号点。 你的任务是尽可能早的抵达 n 号点。 第 i 条边连接点 ai 和点 bi ,通过此边需要花费的时间为 ci 。 在整个移动过程中,你只有在整数时刻才能离开某一点前往另一点。 此外,第 i 个点有 ki 个禁止离开时刻。 在每个点的禁止离开时刻,你无法离开该点前往其它点。 请你计算抵达 n 号点的最早可能时刻。

时间: 2023-04-08 16:00:53 浏览: 54
抱歉,我可以回答这个问题。这是一个最短路问题,可以使用 Dijkstra 算法或者 Bellman-Ford 算法来解决。在算法中,需要考虑每个点的禁止离开时刻,可以将每个点的禁止离开时刻看作一个虚拟的点,然后将其与原图中的点连接起来,边权为0,表示在该时刻可以到达该点。然后再对新图进行最短路计算即可。
相关问题

给定一个无向图,在此无向图中增加一个新顶点。用c++代码实现

以下是用邻接表存储的无向图增加新顶点的代码: ```c++ #include <iostream> #include <vector> using namespace std; // 定义邻接表存储的无向图 class Graph { public: int V; // 顶点数 vector<int> *adj; // 邻接表 Graph(int V) { this->V = V; adj = new vector<int>[V]; } // 添加一条边 void addEdge(int v, int w) { adj[v].push_back(w); adj[w].push_back(v); } // 添加一个新顶点 void addVertex() { V++; vector<int> newVertex; adj[V-1] = newVertex; } }; int main() { Graph g(5); // 创建一个5个顶点的无向图 // 添加边 g.addEdge(0, 1); g.addEdge(0, 4); g.addEdge(1, 2); g.addEdge(1, 3); g.addEdge(1, 4); g.addEdge(2, 3); g.addEdge(3, 4); cout << "原始的无向图:\n"; for (int v = 0; v < g.V; ++v) { cout << v << ":"; for (int w : g.adj[v]) { cout << " " << w; } cout << endl; } g.addVertex(); // 添加一个新顶点 cout << "\n增加新顶点之后的无向图:\n"; for (int v = 0; v < g.V; ++v) { cout << v << ":"; for (int w : g.adj[v]) { cout << " " << w; } cout << endl; } return 0; } ``` 输出结果为: ``` 原始的无向图: 0: 1 4 1: 0 2 3 4 2: 1 3 3: 1 2 4 4: 0 1 3 增加新顶点之后的无向图: 0: 1 4 1: 0 2 3 4 2: 1 3 3: 1 2 4 4: 0 1 3 5: ```

用c++数据结构来解决这个问题,给出C++代码:给定n个点,m条边的有向图,对于每个点v,求f(v)表示从点v出发能到达的编号最大的点(包括自己在内)。 n,m≤105

这个问题可以使用深度优先搜索(DFS)来解决。具体实现过程如下: 1. 初始化一个数组 vis,表示每个点是否被访问过,全部设为 false。 2. 对于每个点 v,如果它没有被访问过,则从它开始进行 DFS。 3. 在 DFS 中,首先将当前点 v 标记为已访问,然后遍历 v 的所有出边,对于每个出边 (v, u),如果点 u 没有被访问过,则递归访问点 u。 4. 在递归返回之前,更新 f(v) 的值,即将 f(v) 设为 max(f(v), f(u))。 5. 最后返回 f(v) 的值。 以下是 C++ 实现代码: ```c++ #include <iostream> #include <vector> using namespace std; const int N = 100005; vector<int> g[N]; bool vis[N]; int f[N]; int dfs(int u) { vis[u] = true; f[u] = u; for (int i = 0; i < g[u].size(); i++) { int v = g[u][i]; if (!vis[v]) { dfs(v); } f[u] = max(f[u], f[v]); } return f[u]; } int main() { int n, m; cin >> n >> m; while (m--) { int u, v; cin >> u >> v; g[u].push_back(v); } for (int i = 1; i <= n; i++) { if (!vis[i]) { dfs(i); } } for (int i = 1; i <= n; i++) { cout << f[i] << endl; } return 0; } ```

相关推荐

最新推荐

recommend-type

约瑟夫环问题用C++代码实现

在这个场景中,我们需要编写一个C++程序来解决这个问题。 首先,我们来理解程序的核心部分。程序定义了一个名为`jos`的递归函数,它接受两个参数:`n`代表当前圆圈中的人数,`k`是报数的间隔,即数到k的人出局。...
recommend-type

C++使用递归和非递归算法实现的二叉树叶子节点个数计算方法

C++使用递归和非递归算法实现的二叉树叶子节点个数计算方法 本文主要介绍了C++使用递归和非递归算法实现的二叉树叶子节点个数计算方法,涉及C++二叉树的定义、遍历、统计相关操作技巧。 一、二叉树的定义 在...
recommend-type

win10环境下vscode Linux C++开发代码自动提示配置(基于WSL)

这是一个强大的源代码编辑器,支持多种编程语言,包括C++。在VSCode内,你需要安装两个关键的插件:`C/C++` 和 `TabNine`。`C/C++`插件提供了C++的IntelliSense功能,即代码补全和语法高亮;而`TabNine`则是一款强大...
recommend-type

C++实现图形界面时钟表盘代码

接下来,代码使用一个`POINT`数组表示时钟表盘的12个标记点,每个点代表小时的刻度。`Ellipse`函数被用来绘制小圆点作为时钟的刻度。这里的`SQUARESIZE`定义了每个刻度圆点的大小,通过遍历数组并围绕每个点画一个小...
recommend-type

C++ boost::asio编程-异步TCP详解及实例代码

在C++编程中,Boost.Asio库是一个强大的网络编程工具,尤其适用于实现高效的异步TCP通信。本文将深入探讨Boost.Asio库中的异步TCP编程,并提供一个简单的异步TCP服务器的实例代码。 首先,理解异步TCP编程的核心...
recommend-type

C++标准程序库:权威指南

"《C++标准程式库》是一本关于C++标准程式库的经典书籍,由Nicolai M. Josuttis撰写,并由侯捷和孟岩翻译。这本书是C++程序员的自学教材和参考工具,详细介绍了C++ Standard Library的各种组件和功能。" 在C++编程中,标准程式库(C++ Standard Library)是一个至关重要的部分,它提供了一系列预先定义的类和函数,使开发者能够高效地编写代码。C++标准程式库包含了大量模板类和函数,如容器(containers)、迭代器(iterators)、算法(algorithms)和函数对象(function objects),以及I/O流(I/O streams)和异常处理等。 1. 容器(Containers): - 标准模板库中的容器包括向量(vector)、列表(list)、映射(map)、集合(set)、无序映射(unordered_map)和无序集合(unordered_set)等。这些容器提供了动态存储数据的能力,并且提供了多种操作,如插入、删除、查找和遍历元素。 2. 迭代器(Iterators): - 迭代器是访问容器内元素的一种抽象接口,类似于指针,但具有更丰富的操作。它们可以用来遍历容器的元素,进行读写操作,或者调用算法。 3. 算法(Algorithms): - C++标准程式库提供了一组强大的算法,如排序(sort)、查找(find)、复制(copy)、合并(merge)等,可以应用于各种容器,极大地提高了代码的可重用性和效率。 4. 函数对象(Function Objects): - 又称为仿函数(functors),它们是具有operator()方法的对象,可以用作函数调用。函数对象常用于算法中,例如比较操作或转换操作。 5. I/O流(I/O Streams): - 标准程式库提供了输入/输出流的类,如iostream,允许程序与标准输入/输出设备(如键盘和显示器)以及其他文件进行交互。例如,cin和cout分别用于从标准输入读取和向标准输出写入。 6. 异常处理(Exception Handling): - C++支持异常处理机制,通过throw和catch关键字,可以在遇到错误时抛出异常,然后在适当的地方捕获并处理异常,保证了程序的健壮性。 7. 其他组件: - 还包括智能指针(smart pointers)、内存管理(memory management)、数值计算(numerical computations)和本地化(localization)等功能。 《C++标准程式库》这本书详细讲解了这些内容,并提供了丰富的实例和注解,帮助读者深入理解并熟练使用C++标准程式库。无论是初学者还是经验丰富的开发者,都能从中受益匪浅,提升对C++编程的掌握程度。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

Parallelization Techniques for Matlab Autocorrelation Function: Enhancing Efficiency in Big Data Analysis

# 1. Introduction to Matlab Autocorrelation Function The autocorrelation function is a vital analytical tool in time-domain signal processing, capable of measuring the similarity of a signal with itself at varying time lags. In Matlab, the autocorrelation function can be calculated using the `xcorr
recommend-type

怎样使scanf函数和printf在同一行表示

在C语言中,`scanf` 和 `printf` 通常是分开使用的,因为它们的功能不同,一个负责从标准输入读取数据,另一个负责向标准输出显示信息。然而,如果你想要在一行代码中完成读取和打印,可以创建一个临时变量存储 `scanf` 的结果,并立即传递给 `printf`。但这种做法并不常见,因为它违反了代码的清晰性和可读性原则。 下面是一个简单的示例,展示了如何在一个表达式中使用 `scanf` 和 `printf`,但这并不是推荐的做法: ```c #include <stdio.h> int main() { int num; printf("请输入一个整数: ");
recommend-type

Java解惑:奇数判断误区与改进方法

Java是一种广泛使用的高级编程语言,以其面向对象的设计理念和平台无关性著称。在本文档中,主要关注的是Java中的基础知识和解惑,特别是关于Java编程语言的一些核心概念和陷阱。 首先,文档提到的“表达式谜题”涉及到Java中的取余运算符(%)。在Java中,取余运算符用于计算两个数相除的余数。例如,`i % 2` 表达式用于检查一个整数`i`是否为奇数。然而,这里的误导在于,Java对`%`操作符的处理方式并不像常规数学那样,对于负数的奇偶性判断存在问题。由于Java的`%`操作符返回的是与左操作数符号相同的余数,当`i`为负奇数时,`i % 2`会得到-1而非1,导致`isOdd`方法错误地返回`false`。 为解决这个问题,文档建议修改`isOdd`方法,使其正确处理负数情况,如这样: ```java public static boolean isOdd(int i) { return i % 2 != 0; // 将1替换为0,改变比较条件 } ``` 或者使用位操作符AND(&)来实现,因为`i & 1`在二进制表示中,如果`i`的最后一位是1,则结果为非零,表明`i`是奇数: ```java public static boolean isOdd(int i) { return (i & 1) != 0; // 使用位操作符更简洁 } ``` 这些例子强调了在编写Java代码时,尤其是在处理数学运算和边界条件时,理解运算符的底层行为至关重要,尤其是在性能关键场景下,选择正确的算法和操作符能避免潜在的问题。 此外,文档还提到了另一个谜题,暗示了开发者在遇到类似问题时需要进行细致的测试,确保代码在各种输入情况下都能正确工作,包括负数、零和正数。这不仅有助于发现潜在的bug,也能提高代码的健壮性和可靠性。 这个文档旨在帮助Java学习者和开发者理解Java语言的一些基本特性,特别是关于取余运算符的行为和如何处理边缘情况,以及在性能敏感的场景下优化算法选择。通过解决这些问题,读者可以更好地掌握Java编程,并避免常见误区。