BP神经网络 1. 导入葡萄酒数据集(python的sklearn库可直接导入); 2. 利用python库的相关BP神经网络算法进行实现; 3. 设置好精度后,通过修改各项参数(隐藏层的层数、各隐藏层节点数、学习率等),观察并记录下不同参数下的迭代次数,并记录下误差与迭代次数的关系曲线; 4. 画出相对应ROC曲线。
时间: 2024-03-16 09:42:36 浏览: 81
好的,我知道了,下面是我的回答:
1. 导入葡萄酒数据集可以使用如下代码:
```python
from sklearn.datasets import load_wine
data = load_wine()
X = data['data']
y = data['target']
```
2. 利用python库的相关BP神经网络算法进行实现,可以使用如下代码:
```python
from sklearn.neural_network import MLPClassifier
clf = MLPClassifier(hidden_layer_sizes=(10,), max_iter=1000)
clf.fit(X, y)
```
其中,`hidden_layer_sizes`表示隐藏层节点数,`max_iter`表示最大迭代次数。
3. 设置好精度后,可以通过修改各项参数(如上述代码中的`hidden_layer_sizes`和`max_iter`),观察并记录下不同参数下的迭代次数与误差的关系曲线,代码如下:
```python
import matplotlib.pyplot as plt
fig, ax = plt.subplots()
for solver in ['lbfgs', 'sgd', 'adam']:
train_errors = []
iters = [10, 20, 30, 40, 50, 60, 70, 80, 90, 100]
for max_iter in iters:
clf = MLPClassifier(hidden_layer_sizes=(10,), max_iter=max_iter, solver=solver)
clf.fit(X, y)
train_errors.append(clf.loss_)
ax.plot(iters, train_errors, label=solver)
ax.set_xlabel('Max Iterations')
ax.set_ylabel('Training Error')
ax.legend()
plt.show()
```
其中,`solver`表示使用的优化器,可选项包括`lbfgs`、`sgd`和`adam`。
4. 画出相对应ROC曲线,可以使用如下代码:
```python
from sklearn.metrics import roc_curve, auc
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)
clf = MLPClassifier(hidden_layer_sizes=(10,), max_iter=1000)
clf.fit(X_train, y_train)
y_pred = clf.predict_proba(X_test)
fpr, tpr, thresholds = roc_curve(y_test, y_pred[:,1])
roc_auc = auc(fpr, tpr)
plt.plot(fpr, tpr, color='darkorange', lw=2, label='ROC curve (area = %0.2f)' % roc_auc)
plt.plot([0, 1], [0, 1], color='navy', lw=2, linestyle='--')
plt.xlim([0.0, 1.0])
plt.ylim([0.0, 1.05])
plt.xlabel('False Positive Rate')
plt.ylabel('True Positive Rate')
plt.title('Receiver operating characteristic')
plt.legend(loc="lower right")
plt.show()
```
其中,`train_test_split`用于将数据集分成训练集和测试集,`predict_proba`用于返回预测概率,`roc_curve`和`auc`用于计算ROC曲线和AUC值。
阅读全文