Task: - Download the UCM dataset from the official source or any reputable repository. - Preprocess the dataset by splitting it into training, validation, and test sets. Please use an 80-10-10 split, respectively. - Choose a suitable deep-learning algorithm for scene classification. You can use popular classifiers such as Convolutional Neural Networks (CNNs). - Implement the chosen algorithm in Python, using appropriate libraries. - Train the classifier using the training set and tune the hyperparameters using the validation set. - Evaluate the trained classifier on the test set using the following metrics: Accuracy: The overall classification accuracy. Precision: The ability to correctly classify positive samples. Recall: The ability to correctly identify positive samples. F1-score: The harmonic mean of precision and recall. Confusion Matrix: A table showing the number of correct and incorrect predictions for each class. Report: Prepare a one-page report summarizing the results of your scene classification experiment and the architecture of your network. Submit your Python code along with the one-page report summarizing the results. Make sure to organize your code and report in a clear and readable manner.

时间: 2024-02-14 22:14:03 浏览: 27
Sure, here's an outline of the steps you'll need to take to complete this task: 1. Download the UCM dataset from the official source or any reputable repository. 2. Preprocess the dataset by splitting it into training, validation, and test sets. Use an 80-10-10 split, respectively. You can use a library like scikit-learn to do this. 3. Choose a suitable deep-learning algorithm for scene classification. Convolutional Neural Networks (CNNs) are a popular choice for image classification tasks like this. 4. Implement the chosen algorithm in Python, using appropriate libraries such as TensorFlow or PyTorch. 5. Train the classifier using the training set and tune the hyperparameters using the validation set. 6. Evaluate the trained classifier on the test set using the following metrics: accuracy, precision, recall, F1-score, and confusion matrix. You can use libraries like scikit-learn to compute these metrics. 7. Prepare a one-page report summarizing the results of your scene classification experiment and the architecture of your network. Include any relevant information such as which hyperparameters you tuned and which ones you used for the final model. Here's some sample code to get you started: ``` # Step 1: Download UCM dataset # TODO: Download dataset and extract files # Step 2: Preprocess dataset from sklearn.model_selection import train_test_split # TODO: Load dataset into memory X_train_val, X_test, y_train_val, y_test = train_test_split(X, y, test_size=0.1, random_state=42) X_train, X_val, y_train, y_val = train_test_split(X_train_val, y_train_val, test_size=0.1, random_state=42) # Step 3: Choose deep-learning algorithm import tensorflow as tf from tensorflow.keras.layers import Conv2D, MaxPooling2D, Flatten, Dense model = tf.keras.Sequential([ Conv2D(32, (3, 3), activation='relu', input_shape=(256, 256, 3)), MaxPooling2D((2, 2)), Conv2D(64, (3, 3), activation='relu'), MaxPooling2D((2, 2)), Conv2D(128, (3, 3), activation='relu'), MaxPooling2D((2, 2)), Conv2D(256, (3, 3), activation='relu'), MaxPooling2D((2, 2)), Flatten(), Dense(256, activation='relu'), Dense(21, activation='softmax') ]) # Step 4: Implement algorithm in Python model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy']) # Step 5: Train classifier history = model.fit(X_train, y_train, epochs=10, validation_data=(X_val, y_val)) # Step 6: Evaluate trained classifier from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score, confusion_matrix y_pred = model.predict(X_test) y_pred_classes = np.argmax(y_pred, axis=1) y_test_classes = np.argmax(y_test, axis=1) accuracy = accuracy_score(y_test_classes, y_pred_classes) precision = precision_score(y_test_classes, y_pred_classes, average='macro') recall = recall_score(y_test_classes, y_pred_classes, average='macro') f1 = f1_score(y_test_classes, y_pred_classes, average='macro') confusion_mat = confusion_matrix(y_test_classes, y_pred_classes) print("Accuracy:", accuracy) print("Precision:", precision) print("Recall:", recall) print("F1-score:", f1) print("Confusion matrix:\n", confusion_mat) # Step 7: Prepare report # TODO: Write report summarizing results and network architecture ```

相关推荐

最新推荐

recommend-type

V-M双闭环直流可逆调速系统建模与仿真

其他参数:Unm*=10V , Uim*=10V , Ucm=10V ,σi≤5% , σn≤10 2.技术指标 稳态指标:无静差(静差率s≤10%, 调速范围 D≥20 ) 动态指标:转速超调量δn≤10%,电流超调量δi≤5%,动态速降Δn≤10%,调速系统的...
recommend-type

ClearCase UCM统一变更管理概论.ppt 首席软件架构师 胡协刚

中国软件架构师网 首席软件架构师 胡协刚除了做架构培训外,对配置管理也有很资深的经验,本ppt是首次放出的教案 ClearCase UCM统一变更管理概论 RUP配置与变更管理科目 ClearCase基本概念 ClearCase UCM概念 ...
recommend-type

绝对经典且实用的 clearcase UCM 常用操作指南手册

绝对经典且实用的 clearcase UCM 常用操作指南手册 一书在手 万事不愁
recommend-type

Oracle UCM文档管理相关核心功能介绍

Oracle UCM文档管理相关核心功能介绍 Oracle UCM文档管理相关核心功能介绍
recommend-type

oracle webcenter portal 安装手册

本文档包含:jdk,oracle,weblogic,rcu,ucm,portal等的产品安装详细步骤。
recommend-type

RTL8188FU-Linux-v5.7.4.2-36687.20200602.tar(20765).gz

REALTEK 8188FTV 8188eus 8188etv linux驱动程序稳定版本, 支持AP,STA 以及AP+STA 共存模式。 稳定支持linux4.0以上内核。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

:YOLOv1目标检测算法:实时目标检测的先驱,开启计算机视觉新篇章

![:YOLOv1目标检测算法:实时目标检测的先驱,开启计算机视觉新篇章](https://img-blog.csdnimg.cn/img_convert/69b98e1a619b1bb3c59cf98f4e397cd2.png) # 1. 目标检测算法概述 目标检测算法是一种计算机视觉技术,用于识别和定位图像或视频中的对象。它在各种应用中至关重要,例如自动驾驶、视频监控和医疗诊断。 目标检测算法通常分为两类:两阶段算法和单阶段算法。两阶段算法,如 R-CNN 和 Fast R-CNN,首先生成候选区域,然后对每个区域进行分类和边界框回归。单阶段算法,如 YOLO 和 SSD,一次性执行检
recommend-type

ActionContext.getContext().get()代码含义

ActionContext.getContext().get() 是从当前请求的上下文对象中获取指定的属性值的代码。在ActionContext.getContext()方法的返回值上,调用get()方法可以获取当前请求中指定属性的值。 具体来说,ActionContext是Struts2框架中的一个类,它封装了当前请求的上下文信息。在这个上下文对象中,可以存储一些请求相关的属性值,比如请求参数、会话信息、请求头、应用程序上下文等等。调用ActionContext.getContext()方法可以获取当前请求的上下文对象,而调用get()方法可以获取指定属性的值。 例如,可以使用 Acti
recommend-type

c++校园超市商品信息管理系统课程设计说明书(含源代码) (2).pdf

校园超市商品信息管理系统课程设计旨在帮助学生深入理解程序设计的基础知识,同时锻炼他们的实际操作能力。通过设计和实现一个校园超市商品信息管理系统,学生掌握了如何利用计算机科学与技术知识解决实际问题的能力。在课程设计过程中,学生需要对超市商品和销售员的关系进行有效管理,使系统功能更全面、实用,从而提高用户体验和便利性。 学生在课程设计过程中展现了积极的学习态度和纪律,没有缺勤情况,演示过程流畅且作品具有很强的使用价值。设计报告完整详细,展现了对问题的深入思考和解决能力。在答辩环节中,学生能够自信地回答问题,展示出扎实的专业知识和逻辑思维能力。教师对学生的表现予以肯定,认为学生在课程设计中表现出色,值得称赞。 整个课程设计过程包括平时成绩、报告成绩和演示与答辩成绩三个部分,其中平时表现占比20%,报告成绩占比40%,演示与答辩成绩占比40%。通过这三个部分的综合评定,最终为学生总成绩提供参考。总评分以百分制计算,全面评估学生在课程设计中的各项表现,最终为学生提供综合评价和反馈意见。 通过校园超市商品信息管理系统课程设计,学生不仅提升了对程序设计基础知识的理解与应用能力,同时也增强了团队协作和沟通能力。这一过程旨在培养学生综合运用技术解决问题的能力,为其未来的专业发展打下坚实基础。学生在进行校园超市商品信息管理系统课程设计过程中,不仅获得了理论知识的提升,同时也锻炼了实践能力和创新思维,为其未来的职业发展奠定了坚实基础。 校园超市商品信息管理系统课程设计的目的在于促进学生对程序设计基础知识的深入理解与掌握,同时培养学生解决实际问题的能力。通过对系统功能和用户需求的全面考量,学生设计了一个实用、高效的校园超市商品信息管理系统,为用户提供了更便捷、更高效的管理和使用体验。 综上所述,校园超市商品信息管理系统课程设计是一项旨在提升学生综合能力和实践技能的重要教学活动。通过此次设计,学生不仅深化了对程序设计基础知识的理解,还培养了解决实际问题的能力和团队合作精神。这一过程将为学生未来的专业发展提供坚实基础,使其在实际工作中能够胜任更多挑战。