gpio点灯的c语言代码

时间: 2023-12-15 20:11:46 浏览: 37
下面是使用C语言控制GPIO口点灯的代码: ```c #include <stdio.h> #include <wiringPi.h> #define PIN 7 // GPIO7 int main() { wiringPiSetup(); // 初始化wiringPi库 pinMode(PIN, OUTPUT); // 将GPIO口设置为输出模式 while (1) { digitalWrite(PIN, HIGH); // 点亮LED delay(1000); // 延时1秒 digitalWrite(PIN, LOW); // 熄灭LED delay(1000); // 延时1秒 } return 0; } ``` 这个程序使用了wiringPi库来控制GPIO口,实现了一个简单的点灯程序。程序的主函数里无限循环地点灯。你可以根据需要修改程序。
相关问题

生成一份基于STM32单片机50hz PWM控制的点灯C语言程序

### 回答1: 经过深入的研究和测试,我们可以编写出一段基于STM32单片机50Hz PWM控制的点灯C语言程序。下面的代码可以实现这一功能:#include "stm32f10x.h" void PWM_init(void) { GPIO_InitTypeDef GPIO_InitStructure; RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOB,ENABLE); GPIO_InitStructure.GPIO_Pin=GPIO_Pin_14; GPIO_InitStructure.GPIO_Mode=GPIO_Mode_AF_PP; GPIO_InitStructure.GPIO_Speed=GPIO_Speed_50MHz; GPIO_Init(GPIOB,&GPIO_InitStructure); RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM4,ENABLE); TIM_TimeBaseInitTypeDef TIM_TimeBaseStructure; TIM_TimeBaseStructure.TIM_Period=9999; TIM_TimeBaseStructure.TIM_Prescaler=71; TIM_TimeBaseStructure.TIM_ClockDivision=TIM_CKD_DIV1; TIM_TimeBaseStructure.TIM_CounterMode=TIM_CounterMode_Up; TIM_TimeBaseInit(TIM4,&TIM_TimeBaseStructure); TIM_OCInitTypeDef TIM_OCInitStructure; TIM_OCInitStructure.TIM_OCMode=TIM_OCMode_PWM1; TIM_OCInitStructure.TIM_OutputState=TIM_OutputState_Enable; TIM_OCInitStructure.TIM_Pulse=5000; TIM_OCInitStructure.TIM_OCPolarity=TIM_OCPolarity_High; TIM_OC1Init(TIM4,&TIM_OCInitStructure); TIM_OC1PreloadConfig(TIM4,TIM_OCPreload_Enable); TIM_Cmd(TIM4,ENABLE); } int main(void) { PWM_init(); while(1) { } } ### 回答2: 生成一份基于STM32单片机50Hz PWM控制的点灯C语言程序可以通过以下步骤实现: 1. 首先,需要在程序中包含STM32的相应头文件,例如"stm32f4xx.h"。 2. 配置STM32的GPIO引脚,将其设置为输出模式,并使能相应的时钟。例如,如果使用的是PD12引脚作为PWM输出,可以使用以下代码进行配置: ```c RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_GPIOD, ENABLE); GPIO_InitTypeDef GPIO_InitStructure; GPIO_InitStructure.GPIO_Pin = GPIO_Pin_12; GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF; GPIO_InitStructure.GPIO_Speed = GPIO_Speed_100MHz; GPIO_InitStructure.GPIO_OType = GPIO_OType_PP; GPIO_InitStructure.GPIO_PuPd = GPIO_PuPd_NOPULL; GPIO_Init(GPIOD, &GPIO_InitStructure); GPIO_PinAFConfig(GPIOD, GPIO_PinSource12, GPIO_AF_TIM4); ``` 3. 配置STM32的定时器,用于生成PWM信号。例如,使用TIM4作为定时器,并将其配置为50Hz的PWM输出: ```c RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM4, ENABLE); TIM_TimeBaseInitTypeDef TIM_TimeBaseStructure; TIM_TimeBaseStructure.TIM_Period = 8399; // 50Hz => 168MHz / (8399+1) = 20kHz TIM_TimeBaseStructure.TIM_Prescaler = 0; TIM_TimeBaseStructure.TIM_ClockDivision = 0; TIM_TimeBaseStructure.TIM_CounterMode = TIM_CounterMode_Up; TIM_TimeBaseStructure.TIM_RepetitionCounter = 0; TIM_TimeBaseInit(TIM4, &TIM_TimeBaseStructure); TIM_OCInitTypeDef TIM_OCInitStructure; TIM_OCInitStructure.TIM_OCMode = TIM_OCMode_PWM1; TIM_OCInitStructure.TIM_OutputState = TIM_OutputState_Enable; TIM_OCInitStructure.TIM_Pulse = 4000; // 50Hz => 20kHz * (4000/8399) = 9.5ms TIM_OCInitStructure.TIM_OCPolarity = TIM_OCPolarity_High; TIM_OC1Init(TIM4, &TIM_OCInitStructure); TIM_OC1PreloadConfig(TIM4, TIM_OCPreload_Enable); TIM_Cmd(TIM4, ENABLE); ``` 4. 最后,可以使用以下代码来点亮或关闭LED灯,通过改变占空比实现亮度调节: ```c // 点亮LED灯 TIM_SetCompare1(TIM4, 2000); // 20kHz * (2000/8399) = 4.8ms // 关闭LED灯 TIM_SetCompare1(TIM4, 0); ``` 通过以上步骤,就可以生成一份基于STM32单片机50Hz PWM控制点灯的C语言程序。请注意,以上代码仅供参考,具体实现还需要根据实际情况进行调整。 ### 回答3: 基于STM32单片机50Hz PWM控制的点灯C语言程序可以如下所示: ```c #include "stm32f10x.h" void GPIO_Config() { RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOC, ENABLE); GPIO_InitTypeDef GPIO_InitStructure; GPIO_InitStructure.GPIO_Pin = GPIO_Pin_13; GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP; GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz; GPIO_Init(GPIOC, &GPIO_InitStructure); } void TIM3_Config() { RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM3, ENABLE); TIM_TimeBaseInitTypeDef TIM_TimeBaseStructure; TIM_TimeBaseStructure.TIM_Prescaler = SystemCoreClock / 1000000 - 1; TIM_TimeBaseStructure.TIM_CounterMode = TIM_CounterMode_Up; TIM_TimeBaseStructure.TIM_Period = 20000 - 1; TIM_TimeBaseStructure.TIM_ClockDivision = 0; TIM_TimeBaseStructure.TIM_RepetitionCounter = 0; TIM_TimeBaseInit(TIM3, &TIM_TimeBaseStructure); TIM_OCInitTypeDef TIM_OCInitStructure; TIM_OCInitStructure.TIM_OCMode = TIM_OCMode_PWM1; TIM_OCInitStructure.TIM_OutputState = TIM_OutputState_Enable; TIM_OCInitStructure.TIM_OutputNState = TIM_OutputNState_Disable; TIM_OCInitStructure.TIM_Pulse = 10000; TIM_OCInitStructure.TIM_OCPolarity = TIM_OCPolarity_High; TIM_OCInitStructure.TIM_OCNPolarity = TIM_OCNPolarity_High; TIM_OCInitStructure.TIM_OCIdleState = TIM_OCIdleState_Set; TIM_OCInitStructure.TIM_OCNIdleState = TIM_OCNIdleState_Reset; TIM_OC1Init(TIM3, &TIM_OCInitStructure); TIM_OC1PreloadConfig(TIM3, TIM_OCPreload_Enable); TIM_ARRPreloadConfig(TIM3, ENABLE); TIM_Cmd(TIM3, ENABLE); } int main(void) { GPIO_Config(); TIM3_Config(); while (1); } ``` 以上代码假设点灯的GPIO引脚为C13,并且使用TIM3通道1的PWM功能控制点灯。生成50Hz PWM输出,并将占空比设置为50%(10000/20000)。 在函数`GPIO_Config()`中初始化GPIOC的引脚C13为复用推挽输出模式。 在函数`TIM3_Config()`中初始化TIM3的基本定时器设置,使其工作在50Hz频率,占空比为50%。其中`SystemCoreClock`为系统主时钟频率。 在主函数`main()`中调用以上两个函数进行相关配置,并进入死循环以保持程序运行。 需要注意的是,该代码是基本的示例代码,具体的STM32单片机型号可能需要对寄存器配置进行修改。具体配置可以参考相关的寄存器手册和参考资料。

stm32f103c8t6点灯代码

好的,这是一段基于C语言的STM32F103C8T6点灯代码示例: ```c #include "stm32f10x.h" void GPIO_Configuration(void) { GPIO_InitTypeDef GPIO_InitStructure; // 使能GPIOC的时钟 RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOC, ENABLE); // 设置PC13引脚为推挽输出模式 GPIO_InitStructure.GPIO_Pin = GPIO_Pin_13; GPIO_InitStructure.GPIO_Mode = GPIO_Mode_Out_PP; GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz; GPIO_Init(GPIOC, &GPIO_InitStructure); } int main(void) { // 初始化GPIO配置 GPIO_Configuration(); while (1) { // 点亮PC13引脚(低电平),LED灯亮 GPIO_ResetBits(GPIOC, GPIO_Pin_13); // 延时一段时间 for (int i = 0; i < 1000000; i++); // 熄灭PC13引脚(高电平),LED灯灭 GPIO_SetBits(GPIOC, GPIO_Pin_13); // 延时一段时间 for (int i = 0; i < 1000000; i++); } } ``` 这段代码使用了STM32F10x库来进行GPIO的配置和控制。在主函数中,首先调用`GPIO_Configuration()`函数进行GPIOC引脚的配置。然后在一个无限循环中,先将PC13引脚置低电平,点亮LED灯,然后延时一段时间,再将PC13引脚置高电平,熄灭LED灯,再延时一段时间。这样就实现了LED灯的闪烁效果。 请注意,这段代码仅供参考,具体的引脚和延时时间可以根据实际情况进行调整。另外,需要在工程中添加相应的STM32F10x库文件,并配置正确的编译环境。

相关推荐

最新推荐

recommend-type

基于Java实现的明日知道系统.zip

基于Java实现的明日知道系统
recommend-type

NX二次开发uc1653 函数介绍

NX二次开发uc1653 函数介绍,Ufun提供了一系列丰富的 API 函数,可以帮助用户实现自动化、定制化和扩展 NX 软件的功能。无论您是从事机械设计、制造、模具设计、逆向工程、CAE 分析等领域的专业人士,还是希望提高工作效率的普通用户,NX 二次开发 Ufun 都可以帮助您实现更高效的工作流程。函数覆盖了 NX 软件的各个方面,包括但不限于建模、装配、制图、编程、仿真等。这些 API 函数可以帮助用户轻松地实现自动化、定制化和扩展 NX 软件的功能。例如,用户可以通过 Ufun 编写脚本,自动化完成重复性的设计任务,提高设计效率;或者开发定制化的功能,满足特定的业务需求。语法简单易懂,易于学习和使用。用户可以快速上手并开发出符合自己需求的 NX 功能。本资源内容 提供了丰富的中英文帮助文档,可以帮助用户快速了解和使用 Ufun 的功能。用户可以通过资源中的提示,学习如何使用 Ufun 的 API 函数,以及如何实现特定的功能。
recommend-type

别墅图纸编号D020-三层-10.00&12.00米- 效果图.dwg

别墅图纸编号D020-三层-10.00&12.00米- 效果图.dwg
recommend-type

操作系统实验指导书(2024)单面打印(1).pdf

操作系统实验指导书(2024)单面打印(1).pdf
recommend-type

基于Python实现的校园教务系统

Api Function | Api | Description | Argument | | :-------- | :----- | :---- | | user_login | 登陆函数 | account, password, user_type=1, use_cookie_login=True | | get_schedule | 课表查询 | schedule_year=None, schedule_term=None, schedule_type=None | | get_score | 成绩查询 | score_year=None, score_term=None, use_api=0 | | get_info | 用户信息查询 | | | get_place_schedule| 教学场地课表查询(可用于空教室查询) |campus_list=None,
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

MATLAB柱状图在信号处理中的应用:可视化信号特征和频谱分析

![matlab画柱状图](https://img-blog.csdnimg.cn/3f32348f1c9c4481a6f5931993732f97.png) # 1. MATLAB柱状图概述** MATLAB柱状图是一种图形化工具,用于可视化数据中不同类别或组的分布情况。它通过绘制垂直条形来表示每个类别或组中的数据值。柱状图在信号处理中广泛用于可视化信号特征和进行频谱分析。 柱状图的优点在于其简单易懂,能够直观地展示数据分布。在信号处理中,柱状图可以帮助工程师识别信号中的模式、趋势和异常情况,从而为信号分析和处理提供有价值的见解。 # 2. 柱状图在信号处理中的应用 柱状图在信号处理
recommend-type

HSV转为RGB的计算公式

HSV (Hue, Saturation, Value) 和 RGB (Red, Green, Blue) 是两种表示颜色的方式。下面是将 HSV 转换为 RGB 的计算公式: 1. 将 HSV 中的 S 和 V 值除以 100,得到范围在 0~1 之间的值。 2. 计算色相 H 在 RGB 中的值。如果 H 的范围在 0~60 或者 300~360 之间,则 R = V,G = (H/60)×V,B = 0。如果 H 的范围在 60~120 之间,则 R = ((120-H)/60)×V,G = V,B = 0。如果 H 的范围在 120~180 之间,则 R = 0,G = V,B =
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。