请参考我给出的代码框架,实现对EMPLOYEE结构体为数据的双向链表的排序算法,要求按照按employeeId升序排列 typedef struct linkNode { void* data; //使用空指针使得NODE适配多种数据结构 struct linkNode* preNode; struct linkNode* nextNode; }LINKED_NODE; /*Define the struct of double linked list.*/ typedef struct { LINKED_NODE* head; LINKED_NODE* tail; size_t size; }DOUBLE_LINK_LIST; typedef struct { int employeeId; char name[20]; char ipAddress[30]; char seatNumber[20]; char group[10]; } EMPLOYEE; DOUBLE_LINK_LIST* createDoubleLinkedList() { DOUBLE_LINK_LIST* newList = (DOUBLE_LINK_LIST*)malloc(sizeof(DOUBLE_LINK_LIST)); newList->head = NULL; newList->tail = NULL; newList->size = 0; return newList; } void destroyDoubleLinkedList(DOUBLE_LINK_LIST* list) {} /*Add a new node before the head.*/ void insertHead(DOUBLE_LINK_LIST* list, void* data) // void执政适配其他data类型? {} /*Add a new node after tail.*/ void insertTail(DOUBLE_LINK_LIST* list, void* data) // 如何适配其他data类型? {} /*Insert a new node.*/ void insertNode(DOUBLE_LINK_LIST* list, void* data,int index) // 如何适配其他data类型? {} void deleteHead(DOUBLE_LINK_LIST* list) {} void deleteTail(DOUBLE_LINK_LIST* list) {} void deleteNode(DOUBLE_LINK_LIST* list, int index) {} LINKED_NODE* getNode(DOUBLE_LINK_LIST* list, int index) {} /* 遍历链表,对每个节点执行指定操作*/ void traverseList(DOUBLE_LINK_LIST* list, void (*callback)(void*)) { LINKED_NODE* currentNode = list->head; while (currentNode != NULL) { callback(currentNode->data); currentNode = currentNode->nextNode; } } void printEmployee(void* data) {}

时间: 2024-04-23 08:27:57 浏览: 238
ZIP

数据结构中的双向链表的代码实现

star3星 · 编辑精心推荐
你可以使用以下代码来实现对EMPLOYEE结构体为数据的双向链表的排序算法,按照按employeeId升序排列: ```c #include <stdio.h> #include <stdlib.h> #include <string.h> typedef struct linkNode { void* data; //使用空指针使得NODE适配多种数据结构 struct linkNode* preNode; struct linkNode* nextNode; } LINKED_NODE; /*Define the struct of double linked list.*/ typedef struct { LINKED_NODE* head; LINKED_NODE* tail; size_t size; } DOUBLE_LINK_LIST; typedef struct { int employeeId; char name[20]; char ipAddress[30]; char seatNumber[20]; char group[10]; } EMPLOYEE; DOUBLE_LINK_LIST* createDoubleLinkedList() { DOUBLE_LINK_LIST* newList = (DOUBLE_LINK_LIST*)malloc(sizeof(DOUBLE_LINK_LIST)); newList->head = NULL; newList->tail = NULL; newList->size = 0; return newList; } void destroyDoubleLinkedList(DOUBLE_LINK_LIST* list) { LINKED_NODE* currentNode = list->head; while (currentNode != NULL) { LINKED_NODE* nextNode = currentNode->nextNode; free(currentNode); currentNode = nextNode; } free(list); } /*Add a new node before the head.*/ void insertHead(DOUBLE_LINK_LIST* list, void* data) { LINKED_NODE* newNode = (LINKED_NODE*)malloc(sizeof(LINKED_NODE)); newNode->data = data; newNode->preNode = NULL; newNode->nextNode = list->head; if (list->head != NULL) list->head->preNode = newNode; list->head = newNode; if (list->tail == NULL) list->tail = newNode; list->size++; } /*Add a new node after tail.*/ void insertTail(DOUBLE_LINK_LIST* list, void* data) { LINKED_NODE* newNode = (LINKED_NODE*)malloc(sizeof(LINKED_NODE)); newNode->data = data; newNode->preNode = list->tail; newNode->nextNode = NULL; if (list->tail != NULL) list->tail->nextNode = newNode; list->tail = newNode; if (list->head == NULL) list->head = newNode; list->size++; } /*Insert a new node.*/ void insertNode(DOUBLE_LINK_LIST* list, void* data, int index) { if (index < 0 || index > list->size) { printf("Invalid index\n"); return; } if (index == 0) { insertHead(list, data); return; } if (index == list->size) { insertTail(list, data); return; } LINKED_NODE* currentNode = getNode(list, index); LINKED_NODE* newNode = (LINKED_NODE*)malloc(sizeof(LINKED_NODE)); newNode->data = data; newNode->preNode = currentNode->preNode; newNode->nextNode = currentNode; currentNode->preNode->nextNode = newNode; currentNode->preNode = newNode; list->size++; } void deleteHead(DOUBLE_LINK_LIST* list) { if (list->head == NULL) return; LINKED_NODE* oldHead = list->head; list->head = oldHead->nextNode; if (list->head != NULL) list->head->preNode = NULL; free(oldHead); list->size--; if (list->size == 0) list->tail = NULL; } void deleteTail(DOUBLE_LINK_LIST* list) { if (list->tail == NULL) return; LINKED_NODE* oldTail = list->tail; list->tail = oldTail->preNode; if (list->tail != NULL) list->tail->nextNode = NULL; free(oldTail); list->size--; if (list->size == 0) list->head = NULL; } void deleteNode(DOUBLE_LINK_LIST* list, int index) { if (index < 0 || index >= list->size) { printf("Invalid index\n"); return; } if (index == 0) { deleteHead(list); return; } if (index == list->size - 1) { deleteTail(list); return; } LINKED_NODE* currentNode = getNode(list, index); currentNode->preNode->nextNode = currentNode->nextNode; currentNode->nextNode->preNode = currentNode->preNode; free(currentNode); list->size--; } LINKED_NODE* getNode(DOUBLE_LINK_LIST* list, int index) { if (index < 0 || index >= list->size) { printf("Invalid index\n"); return NULL; } LINKED_NODE* currentNode = list->head; int i = 0; while (i < index) { currentNode = currentNode->nextNode; i++; } return currentNode; } void traverseList(DOUBLE_LINK_LIST* list, void (*callback)(void*)) { LINKED_NODE* currentNode = list->head; while (currentNode != NULL) { callback(currentNode->data); currentNode = currentNode->nextNode; } } void printEmployee(void* data) { EMPLOYEE* employee = (EMPLOYEE*)data; printf("Employee ID: %d, Name: %s\n", employee->employeeId, employee->name); } int compareEmployee(const void* a, const void* b) { EMPLOYEE* employeeA = (EMPLOYEE*)a; EMPLOYEE* employeeB = (EMPLOYEE*)b; return employeeA->employeeId - employeeB->employeeId; } void sortList(DOUBLE_LINK_LIST* list) { size_t dataSize = sizeof(EMPLOYEE); EMPLOYEE** employeeArray = (EMPLOYEE**)malloc(list->size * sizeof(EMPLOYEE*)); LINKED_NODE* currentNode = list->head; size_t i = 0; while (currentNode != NULL) { employeeArray[i] = (EMPLOYEE*)currentNode->data; currentNode = currentNode->nextNode; i++; } qsort(employeeArray, list->size, dataSize, compareEmployee); currentNode = list->head; i = 0; while (currentNode != NULL) { currentNode->data = employeeArray[i]; currentNode = currentNode->nextNode; i++; } free(employeeArray); } int main() { DOUBLE_LINK_LIST* list = createDoubleLinkedList(); EMPLOYEE* employee1 = (EMPLOYEE*)malloc(sizeof(EMPLOYEE)); employee1->employeeId = 2; strcpy(employee1->name, "John"); insertHead(list, employee1); EMPLOYEE* employee2 = (EMPLOYEE*)malloc(sizeof(EMPLOYEE)); employee2->employeeId = 1; strcpy(employee2->name, "Alice"); insertHead(list, employee2); EMPLOYEE* employee3 = (EMPLOYEE*)malloc(sizeof(EMPLOYEE)); employee3->employeeId = 3; strcpy(employee3->name, "Bob"); insertHead(list, employee3); printf("Before sorting:\n"); traverseList(list, printEmployee); sortList(list); printf("\nAfter sorting:\n"); traverseList(list, printEmployee); destroyDoubleLinkedList(list); return 0; } ``` 这段代码首先定义了双向链表的结构体和EMPLOYEE结构体,然后实现了双向链表的创建、销毁、插入、删除、遍历等操作。其中,`sortList`函数使用了快速排序算法对双向链表中的EMPLOYEE结构体按照employeeId升序进行排序。在`main`函数中,创建了一个双向链表并插入了三个EMPLOYEE结构体,然后调用`sortList`函数对链表进行排序并输出结果。 请注意,在代码中使用了动态内存分配(`malloc`)来分配内存,并在适当的时候使用了`free`来释放内存,以防止内存泄漏。
阅读全文

相关推荐

最新推荐

recommend-type

C++双向链表实现简单通讯录

C++双向链表实现简单通讯录 在本文中,我们将详细介绍C++双向链表实现简单通讯录的实现方法。我们将从头开始,了解C++双向链表的基本概念,然后逐步实现一个简单的通讯录系统。 首先,让我们了解一下C++双向链表...
recommend-type

Python实现结构体代码实例

在提供的代码实例中,`Myclass` 类内部定义了一个名为 `Struct` 的嵌套类,用于创建结构体对象。 ```python class Myclass(object): class Struct(object): def __init__(self, name, age, job): self.name = ...
recommend-type

数据结构课程设计报告之排序算法.docx

- **实现算法**:需要实现包括直接插入排序、冒泡排序、直接选择排序、快速排序、堆排序和归并排序在内的多种内部排序算法。 - **演示形式**:程序应以人机交互的方式运行,每次排序后展示比较次数和移动次数的...
recommend-type

C语言数据结构实现链表逆序并输出

在C语言中,链表是一种常见的数据结构,它由一系列节点组成,每个节点包含数据部分和指向下一个节点的指针。链表的操作多种多样,其中链表的逆序输出是一项基础而重要的操作。本文将详细讲解如何在C语言中实现链表的...
recommend-type

Printer Queue算法(华为: 打印任务排序, POJ3125)Golang实现

这个问题涉及到ACM竞赛中的算法设计,它要求我们根据输入数据,确定打印任务的执行顺序,并计算特定任务的打印时间。 **问题描述:** 该问题的输入包括多个测试用例,每个测试用例由两行组成。第一行给出测试用例的...
recommend-type

Java毕业设计项目:校园二手交易网站开发指南

资源摘要信息:"Java是一种高性能、跨平台的面向对象编程语言,由Sun Microsystems(现为Oracle Corporation)的James Gosling等人在1995年推出。其设计理念是为了实现简单性、健壮性、可移植性、多线程以及动态性。Java的核心优势包括其跨平台特性,即“一次编写,到处运行”(Write Once, Run Anywhere),这得益于Java虚拟机(JVM)的存在,它提供了一个中介,使得Java程序能够在任何安装了相应JVM的设备上运行,无论操作系统如何。 Java是一种面向对象的编程语言,这意味着它支持面向对象编程(OOP)的三大特性:封装、继承和多态。封装使得代码模块化,提高了安全性;继承允许代码复用,简化了代码的复杂性;多态则增强了代码的灵活性和扩展性。 Java还具有内置的多线程支持能力,允许程序同时处理多个任务,这对于构建服务器端应用程序、网络应用程序等需要高并发处理能力的应用程序尤为重要。 自动内存管理,特别是垃圾回收机制,是Java的另一大特性。它自动回收不再使用的对象所占用的内存资源,这样程序员就无需手动管理内存,从而减轻了编程的负担,并减少了因内存泄漏而导致的错误和性能问题。 Java广泛应用于企业级应用开发、移动应用开发(尤其是Android平台)、大型系统开发等领域,并且有大量的开源库和框架支持,例如Spring、Hibernate、Struts等,这些都极大地提高了Java开发的效率和质量。 标签中提到的Java、毕业设计、课程设计和开发,意味着文件“毕业设计---社区(校园)二手交易网站.zip”中的内容可能涉及到Java语言的编程实践,可能是针对学生的课程设计或毕业设计项目,而开发则指出了这些内容的具体活动。 在文件名称列表中,“SJT-code”可能是指该压缩包中包含的是一个特定的项目代码,即社区(校园)二手交易网站的源代码。这类网站通常需要实现用户注册、登录、商品发布、浏览、交易、评价等功能,并且需要后端服务器支持,如数据库连接和事务处理等。考虑到Java的特性,网站的开发可能使用了Java Web技术栈,如Servlet、JSP、Spring Boot等,以及数据库技术,如MySQL或MongoDB等。"
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【MVC标准化:肌电信号处理的终极指南】:提升数据质量的10大关键步骤与工具

![MVC标准化](https://img-blog.csdn.net/20160221141956498) # 摘要 MVC标准化是肌电信号处理中确保数据质量的重要步骤,它对于提高测量结果的准确性和可重复性至关重要。本文首先介绍肌电信号的生理学原理和MVC标准化理论,阐述了数据质量的重要性及影响因素。随后,文章深入探讨了肌电信号预处理的各个环节,包括噪声识别与消除、信号放大与滤波技术、以及基线漂移的校正方法。在提升数据质量的关键步骤部分,本文详细描述了信号特征提取、MVC标准化的实施与评估,并讨论了数据质量评估与优化工具。最后,本文通过实验设计和案例分析,展示了MVC标准化在实践应用中的具
recommend-type

能否提供一个在R语言中执行Framingham数据集判别分析的详细和完整的代码示例?

当然可以。在R语言中,Framingham数据集是一个用于心血管疾病研究的经典数据集。以下是使用`ggfortify`包结合` factoextra`包进行判别分析的一个基本步骤: 首先,你需要安装所需的库,如果尚未安装,可以使用以下命令: ```r install.packages(c("ggfortify", "factoextra")) ``` 然后加载所需的数据集并做预处理。Framingham数据集通常存储在`MASS`包中,你可以通过下面的代码加载: ```r library(MASS) data(Framingham) ``` 接下来,我们假设你已经对数据进行了适当的清洗和转换
recommend-type

Blaseball Plus插件开发与构建教程

资源摘要信息:"Blaseball Plus" Blaseball Plus是一个与游戏Blaseball相关的扩展项目,该项目提供了一系列扩展和改进功能,以增强Blaseball游戏体验。在这个项目中,JavaScript被用作主要开发语言,通过在package.json文件中定义的脚本来完成构建任务。项目说明中提到了开发环境的要求,即在20.09版本上进行开发,并且提供了一个flake.nix文件来复制确切的构建环境。虽然Nix薄片是一项处于工作状态(WIP)的功能且尚未完全记录,但可能需要用户自行安装系统依赖项,其中列出了Node.js和纱(Yarn)的特定版本。 ### 知识点详细说明: #### 1. Blaseball游戏: Blaseball是一个虚构的棒球游戏,它在互联网社区中流行,其特点是独特的规则、随机事件和社区参与的元素。 #### 2. 扩展开发: Blaseball Plus是一个扩展,它可能是为在浏览器中运行的Blaseball游戏提供额外功能和改进的软件。扩展开发通常涉及编写额外的代码来增强现有软件的功能。 #### 3. JavaScript编程语言: JavaScript是一种高级的、解释执行的编程语言,被广泛用于网页和Web应用的客户端脚本编写,是开发Web扩展的关键技术之一。 #### 4. package.json文件: 这是Node.js项目的核心配置文件,用于声明项目的各种配置选项,包括项目名称、版本、依赖关系以及脚本命令等。 #### 5.构建脚本: 描述中提到的脚本,如`build:dev`、`build:prod:unsigned`和`build:prod:signed`,这些脚本用于自动化构建过程,可能包括编译、打包、签名等步骤。`yarn run`命令用于执行这些脚本。 #### 6. yarn包管理器: Yarn是一个快速、可靠和安全的依赖项管理工具,类似于npm(Node.js的包管理器)。它允许开发者和项目管理依赖项,通过简单的命令行界面可以轻松地安装和更新包。 #### 7. Node.js版本管理: 项目要求Node.js的具体版本,这里是14.9.0版本。管理特定的Node.js版本是重要的,因为在不同版本间可能会存在API变化或其他不兼容问题,这可能会影响扩展的构建和运行。 #### 8. 系统依赖项的安装: 文档提到可能需要用户手动安装系统依赖项,这在使用Nix薄片时尤其常见。Nix薄片(Nix flakes)是一个实验性的Nix特性,用于提供可复现的开发环境和构建设置。 #### 9. Web扩展的工件放置: 构建后的工件放置在`addon/web-ext-artifacts/`目录中,表明这可能是一个基于WebExtension的扩展项目。WebExtension是一种跨浏览器的扩展API,用于创建浏览器扩展。 #### 10. 扩展部署: 描述中提到了两种不同类型的构建版本:开发版(dev)和生产版(prod),其中生产版又分为未签名(unsigned)和已签名(signed)版本。这些不同的构建版本用于不同阶段的开发和发布。 通过这份文档,我们能够了解到Blaseball Plus项目的开发环境配置、构建脚本的使用、依赖管理工具的运用以及Web扩展的基本概念和部署流程。这些知识点对于理解JavaScript项目开发和扩展构建具有重要意义。