在python中用opencv和深度学习写一个给视频降噪的代码
时间: 2024-02-04 09:03:19 浏览: 91
下面是使用OpenCV和深度学习进行视频降噪的Python代码示例:
```python
import cv2
import numpy as np
from keras.models import Sequential
from keras.layers import Conv2D
# 创建模型
def create_model():
model = Sequential()
model.add(Conv2D(filters=64, kernel_size=(3, 3), activation='relu', padding='same', input_shape=(None, None, 3)))
model.add(Conv2D(filters=64, kernel_size=(3, 3), activation='relu', padding='same'))
model.add(Conv2D(filters=32, kernel_size=(3, 3), activation='relu', padding='same'))
model.add(Conv2D(filters=3, kernel_size=(3, 3), activation='relu', padding='same'))
return model
# 加载模型权重
def load_weights(model):
model.load_weights('denoise.h5')
# 视频降噪
def denoise_video(video_path):
# 加载模型
model = create_model()
load_weights(model)
# 打开视频文件
cap = cv2.VideoCapture(video_path)
# 获取视频帧率和尺寸
fps = cap.get(cv2.CAP_PROP_FPS)
width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
# 定义VideoWriter对象,用于输出降噪后的视频
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
writer = cv2.VideoWriter('output.mp4', fourcc, fps, (width, height))
# 读取视频帧并进行降噪
while True:
ret, frame = cap.read()
if not ret:
break
# 将帧转换为float类型并归一化
image = np.float32(frame) / 255.0
# 使用模型进行降噪
denoised_image = model.predict(np.expand_dims(image, axis=0))[0]
# 将降噪后的图片还原到0-255范围内
denoised_image = np.uint8(np.clip(denoised_image * 255.0, 0.0, 255.0))
# 写入输出视频文件
writer.write(denoised_image)
# 释放资源
cap.release()
writer.release()
if __name__ == '__main__':
denoise_video('input.mp4')
```
上述代码中,我们首先定义了一个四层卷积神经网络模型,用于对视频进行降噪。然后,我们使用该模型对视频进行降噪,并将降噪后的视频输出到文件中。在实际使用中,需要根据具体情况调整模型的参数和结构,以获得更好的降噪效果。
阅读全文