写一个半监督强化学习的代码
时间: 2023-10-02 10:07:02 浏览: 138
好的,以下是一个半监督强化学习示例代码(使用 Python 和 TensorFlow):
```
import tensorflow as tf
import numpy as np
# 构建半监督强化学习模型
class SemiSupervisedRLModel(object):
def __init__(self, input_shape, num_actions, num_labeled_samples):
self.input_shape = input_shape
self.num_actions = num_actions
self.num_labeled_samples = num_labeled_samples
self.labeled_input = tf.placeholder(tf.float32, shape=[self.num_labeled_samples] + self.input_shape)
self.labeled_actions = tf.placeholder(tf.int32, shape=[self.num_labeled_samples])
self.unlabeled_input = tf.placeholder(tf.float32, shape=[None] + self.input_shape)
labeled_out = self._build_network(self.labeled_input)
self.labeled_probs = tf.nn.softmax(labeled_out)
self.labeled_rewards = tf.log(tf.reduce_sum(tf.multiply(self.labeled_probs, tf.one_hot(self.labeled_actions, depth=self.num_actions)), axis=1))
self.labeled_loss = -tf.reduce_mean(self.labeled_rewards)
unlabeled_out = self._build_network(self.unlabeled_input, trainable=False)
self.unlabeled_probs = tf.nn.softmax(unlabeled_out)
self.reward_grads = tf.gradients(tf.log(tf.reduce_sum(self.unlabeled_probs, axis=1)), self.unlabeled_input)
self.optimizer = tf.train.AdamOptimizer()
self.all_vars = tf.trainable_variables()
self.labeled_vars = [var for var in self.all_vars if 'labeled' in var.name]
self.unlabeled_vars = [var for var in self.all_vars if 'labeled' not in var.name]
self.labeled_train_op = self.optimizer.minimize(self.labeled_loss, var_list=self.labeled_vars)
self.unlabeled_train_op = self.optimizer.apply_gradients(zip(self.reward_grads, self.unlabeled_vars))
self.sess = tf.Session()
self.sess.run(tf.global_variables_initializer())
def _build_network(self, input, trainable=True):
x = tf.layers.flatten(input)
x = tf.layers.dense(x, 64, activation=tf.nn.relu, trainable=trainable, name='hidden')
out = tf.layers.dense(x, self.num_actions, trainable=trainable, name='out')
return out
def train_labeled(self, x, y):
return self.sess.run([self.labeled_loss, self.labeled_train_op], feed_dict={self.labeled_input: x, self.labeled_actions: y})
def train_unlabeled(self, x):
self.sess.run([self.unlabeled_train_op], feed_dict={self.unlabeled_input: x})
def get_labeled_reward(self, x, y):
return self.sess.run([self.labeled_rewards], feed_dict={self.labeled_input: x, self.labeled_actions: y})
def get_unlabeled_probs(self, x):
return self.sess.run([self.unlabeled_probs], feed_dict={self.unlabeled_input: x})
# 测试模型
input_shape = [4]
num_actions = 2
num_labeled_samples = 10
model = SemiSupervisedRLModel(input_shape, num_actions, num_labeled_samples)
# 随机生成有标签样本
x_labeled = np.random.randn(num_labeled_samples, *input_shape)
y_labeled = np.random.choice(num_actions, num_labeled_samples)
# 训练模型
for i in range(100):
labeled_loss, _ = model.train_labeled(x_labeled, y_labeled)
if i % 10 == 0:
print('Iteration {}: Labeled Loss = {}'.format(i, labeled_loss))
if i % 20 == 0:
x_unlabeled = np.random.randn(5, *input_shape)
model.train_unlabeled(x_unlabeled)
# 测试使用无标签数据获取的行为概率
x_unlabeled = np.random.randn(5, *input_shape)
unlabeled_probs, = model.get_unlabeled_probs(x_unlabeled)
print('Unlabeled Probs:', unlabeled_probs)
# 测试使用标签数据获取的回报
x_labeled_test = np.random.randn(num_labeled_samples//2, *input_shape)
y_labeled_test = np.random.choice(num_actions, num_labeled_samples//2)
labeled_rewards, = model.get_labeled_reward(x_labeled_test, y_labeled_test)
print('Labeled Rewards:', labeled_rewards)
```
该示例代码实现了一个简单的半监督强化学习模型,其中有一些有标签的状态-行动对和许多无标签的状态。它同时训练有标签样本上的强化学习准则,并使用无标签数据推断奖励函数。最终,该模型能够在有标签测试集上计算出带权利回报,并在未标签测试集上计算出每个可能动作的概率分布。请注意,该示例代码仅用于演示和教育目的,还有许多可以优化和改进的地方。
阅读全文