数字图像处理 编写 Python 代码,要求先将图像进行扩展(上下左右各扩展若干个像素,保证变换后图像信息不丢失),然后对图像进行仿射变换(需要调试参数),最后使用相反的仿射变换将畸变的图像进行校正。
时间: 2024-09-24 15:20:06 浏览: 80
在Python中,我们通常使用PIL(Python Imaging Library)或其后续项目Pillow库来进行图像处理,以及OpenCV等库来执行更高级的图像操作。下面是一个简单的步骤概述,展示如何实现这个任务:
1. 导入所需库:
```python
from PIL import Image, ImageFilter
import cv2
import numpy as np
```
2. 图像扩展(填充边缘像素):
```python
def expand_image(image, pad_amount):
width, height = image.size
new_width = width + pad_amount * 2
new_height = height + pad_amount * 2
extended_image = Image.new('RGB', (new_width, new_height), color=image.getpixel((0, 0)))
extended_image.paste(image, (pad_amount, pad_amount))
return extended_image
# 使用示例
original_image = Image.open("your_image.jpg")
extended_image = expand_image(original_image, pad_amount=10)
```
3. 仿射变换:
```python
def affine_transform(image, transform_matrix, fill_color=(0, 0, 0)):
width, height = image.size
new_image = Image.new('RGB', (width, height), fill_color)
draw = ImageDraw.Draw(new_image)
draw.transform([(0, 0), (width, 0), (width, height), (0, height)], fillcolor=fill_color, matrix=transform_matrix)
draw.bitmap((0, 0), image)
return new_image
# 构造仿射变换矩阵(这里假设是顺时针旋转45度)
transform_matrix = cv2.getRotationMatrix2D((width/2, height/2), 45, 1)
affined_image = affine_transform(extended_image, transform_matrix)
```
4. 反向仿射校正:
```python
def inverse_affine_transform(image, original_size, transform_matrix):
inv_matrix = np.linalg.inv(transform_matrix)
# 将OpenCV的仿射矩阵转换回PIL格式
pil_inv_matrix = [(inv_matrix[0][0], inv_matrix[0][1]), (inv_matrix[1][0], inv_matrix[1][1])]
corrected_image = Image.fromarray(cv2.warpAffine(np.array(image), pil_inv_matrix, tuple(reversed(original_size))))
return corrected_image
# 使用原始尺寸还原纠正后的图像
corrected_image = inverse_affine_transform(affined_image, original_image.size, transform_matrix)
```
阅读全文