使用Hadoop的MapReduce,用Java语言编写程序,过滤掉所有只打低于1分且评论次数大于5次的恶意用户的评分
时间: 2024-03-23 07:40:25 浏览: 58
好的,这个问题可以通过编写一个Hadoop MapReduce程序来解决。具体步骤如下:
1. 输入数据格式为每行一个评分记录,包括用户ID、电影ID、评分和评论次数。
2. Mapper阶段:将每行评分记录按照用户ID进行分组,然后对于每个用户的所有评分记录,将评分和评论次数累加起来。
3. Reducer阶段:对于每个用户,判断其评分是否低于1分且评论次数大于5次,如果是则将其过滤掉,否则输出其所有评分记录。
下面是MapReduce程序的Java代码示例:
```java
public class FilterMaliciousUsers {
public static class Map extends Mapper<LongWritable, Text, Text, IntWritable> {
private Text userId = new Text();
private IntWritable ratingCount = new IntWritable();
private IntWritable ratingSum = new IntWritable();
public void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {
String[] fields = value.toString().split(",");
userId.set(fields[0]);
int rating = Integer.parseInt(fields[2]);
int count = Integer.parseInt(fields[3]);
ratingSum.set(rating);
ratingCount.set(count);
context.write(userId, ratingSum, ratingCount);
}
}
public static class Reduce extends Reducer<Text, IntWritable, Text, Text> {
public void reduce(Text key, Iterable<IntWritable> values, Context context) throws IOException, InterruptedException {
int sum = 0;
int count = 0;
for (IntWritable value : values) {
sum += value.get();
count += 1;
}
if (sum / count >= 1 || count <= 5) {
return;
}
StringBuilder output = new StringBuilder();
for (IntWritable value : values) {
output.append(value.get()).append(",");
}
context.write(key, new Text(output.toString()));
}
}
public static void main(String[] args) throws Exception {
Configuration conf = new Configuration();
Job job = Job.getInstance(conf, "FilterMaliciousUsers");
job.setJarByClass(FilterMaliciousUsers.class);
job.setMapperClass(Map.class);
job.setReducerClass(Reduce.class);
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(IntWritable.class);
FileInputFormat.addInputPath(job, new Path(args[0]));
FileOutputFormat.setOutputPath(job, new Path(args[1]));
System.exit(job.waitForCompletion(true) ? 0 : 1);
}
}
```
在这个程序中,我们通过Mapper将每行评分记录按照用户ID进行分组,并将评分和评论次数累加起来。在Reducer中,对于每个用户,我们判断其评分是否低于1分且评论次数大于5次,如果是则将其过滤掉,否则输出其所有评分记录。最后,我们将输出结果写入到HDFS中。
阅读全文