请使用Hadoop的MapReduce,用Java语言编写程序,过滤掉所有只打低于1分且评论次数大于5次的恶意用户的评分
时间: 2024-03-23 11:39:24 浏览: 53
好的,我可以为您编写这样的程序。以下是程序的大致步骤:
1. 读取输入文件,每一行为一个用户的评分记录,包括用户ID、评分和评论次数。
2. 将每个用户的评分记录按照用户ID进行分组。
3. 对于每个用户,如果其评分低于1且评论次数大于5次,则认为该用户是恶意用户,将其从输出结果中过滤掉。
4. 输出过滤后的评分结果,仅包含非恶意用户的评分记录。
下面是程序的详细实现:
```java
import java.io.IOException;
import java.util.ArrayList;
import java.util.List;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
public class FilterMaliciousUsers {
public static class MapClass extends Mapper<LongWritable, Text, Text, Text> {
private Text outKey = new Text();
private Text outValue = new Text();
public void map(LongWritable key, Text value, Context context)
throws IOException, InterruptedException {
String[] fields = value.toString().split(",");
String userId = fields[0];
String rating = fields[1];
String numRatings = fields[2];
outKey.set(userId);
outValue.set(rating + "," + numRatings);
context.write(outKey, outValue);
}
}
public static class ReduceClass extends Reducer<Text, Text, Text, Text> {
private Text outValue = new Text();
public void reduce(Text key, Iterable<Text> values, Context context)
throws IOException, InterruptedException {
int numRatings = 0;
float sumRatings = 0;
List<String> ratings = new ArrayList<String>();
for (Text value : values) {
String[] fields = value.toString().split(",");
float rating = Float.parseFloat(fields[0]);
int num = Integer.parseInt(fields[1]);
sumRatings += rating;
numRatings += num;
ratings.add(value.toString());
}
if (numRatings > 5 && sumRatings / numRatings >= 1) {
for (String rating : ratings) {
outValue.set(rating);
context.write(key, outValue);
}
}
}
}
public static void main(String[] args) throws Exception {
Configuration conf = new Configuration();
Job job = Job.getInstance(conf, "Filter Malicious Users");
job.setJarByClass(FilterMaliciousUsers.class);
job.setMapperClass(MapClass.class);
job.setReducerClass(ReduceClass.class);
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(Text.class);
FileInputFormat.addInputPath(job, new Path(args[0]));
FileOutputFormat.setOutputPath(job, new Path(args[1]));
System.exit(job.waitForCompletion(true) ? 0 : 1);
}
}
```
您需要将上述代码保存为一个Java文件,例如`FilterMaliciousUsers.java`,并使用Hadoop的命令行工具编译和运行程序。假设您已经将输入文件保存在HDFS的`/input`目录下,输出结果将保存在`/output`目录下,可以使用以下命令来运行程序:
```
$ hadoop com.sun.tools.javac.Main FilterMaliciousUsers.java
$ jar cf fmu.jar FilterMaliciousUsers*.class
$ hadoop jar fmu.jar FilterMaliciousUsers /input /output
```
注意,上述命令中的`fmu.jar`是您编译后的Java程序的JAR文件名,可能需要根据实际情况进行修改。
阅读全文