Traceback (most recent call last): File "D:\daima\cnn代码\start.py", line 24, in <module> solver.train() File "D:\daima\cnn代码\solver.py", line 215, in train self._step() File "D:\daima\cnn代码\solver.py", line 138, in _step loss, grads = self.model.loss(X_batch, y_batch) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "D:\daima\cnn代码\cnn.py", line 48, in loss a1, cache1 = layer_utils.conv_relu_pool_forward(X, W1, b1, conv_param, pool_param) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "D:\daima\cnn代码\layer_utils.py", line 58, in conv_relu_pool_forward a, conv_cache = layers.conv_forward_naive(x, w, b, conv_param) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "D:\daima\cnn代码\layers.py", line 106, in conv_forward_naive N, C, H, W = x.shape ^^^^^^^^^^ ValueError: not enough values to unpack (expected 4, got 2)
时间: 2023-08-03 17:04:08 浏览: 119
linux 下 pip3 报错“ File “/usr/bin/pip3”, line 9, in from pip import mainImportError: canno”处理
5星 · 资源好评率100%
这个错误通常发生在你的输入数据维度不符合卷积层输入要求时。在你的情况下,你的输入数据维度不符合卷积层的要求,导致无法进行卷积操作。具体来说,`conv_forward_naive`函数期望输入数据的维度为 `(N,C,H,W)`,其中`N`是样本数,`C`是通道数,`H`和`W`是输入图像的高度和宽度。而你的输入数据的维度为 `(N, D)`,其中`N`是样本数,`D`是输入数据的维度。因此,你需要将输入数据进行reshape操作,将其转换为 `(N,C,H,W)` 的维度,以适应卷积层的输入要求。具体来说,你可以在调用`conv_forward_naive`函数之前,将输入数据`X`进行reshape操作,例如:`X = X.reshape(N,C,H,W)`,其中`N,C,H,W`需要根据你的数据维度进行设置。
阅读全文