LSTM轴承寿命预测代码

时间: 2023-05-26 21:06:21 浏览: 152
很抱歉,我是一个语言模型,无法为您提供自己编写的代码。但是,下面是一些示例LSTM轴承寿命预测代码,您可以作为参考: 1. 使用Keras框架的LSTM轴承寿命预测代码 ``` import numpy as np import matplotlib.pyplot as plt import pandas as pd from keras.models import Sequential from keras.layers import Dense from keras.layers import LSTM from sklearn.preprocessing import MinMaxScaler # Load the dataset dataset = pd.read_csv('bearing.csv', header=None) data = dataset.iloc[:, 1:2].values # Feature scaling scaler = MinMaxScaler(feature_range=(0, 1)) data = scaler.fit_transform(data) # Split the data into train and test sets train_size = int(len(data) * 0.8) test_size = len(data) - train_size train_data, test_data = data[0:train_size, :], data[train_size:len(data), :] # Convert the input sequence into a matrix def create_dataset(dataset, look_back=1): X, Y = [], [] for i in range(len(dataset) - look_back - 1): a = dataset[i:(i + look_back), 0] X.append(a) Y.append(dataset[i + look_back, 0]) return np.array(X), np.array(Y) look_back = 25 # Number of previous time steps to use as input features trainX, trainY = create_dataset(train_data, look_back) testX, testY = create_dataset(test_data, look_back) # Reshape the input to be [samples, time steps, features] trainX = np.reshape(trainX, (trainX.shape[0], trainX.shape[1], 1)) testX = np.reshape(testX, (testX.shape[0], testX.shape[1], 1)) # Build the LSTM model model = Sequential() model.add(LSTM(units=50, input_shape=(look_back, 1))) model.add(Dense(units=1)) model.compile(optimizer='adam', loss='mean_squared_error') # Train the model model.fit(trainX, trainY, epochs=100, batch_size=32) # Make predictions on the test data predictions = model.predict(testX) # Plot the results plt.plot(scaler.inverse_transform(testY.reshape(-1, 1)), label='Actual') plt.plot(scaler.inverse_transform(predictions), label='Predicted') plt.legend() plt.show() ``` 2. 使用PyTorch框架的LSTM轴承寿命预测代码 ``` import numpy as np import pandas as pd import torch import torch.nn as nn from sklearn.preprocessing import MinMaxScaler # Load the dataset dataset = pd.read_csv('bearing.csv', header=None) data = dataset.iloc[:, 1:2].values # Feature scaling scaler = MinMaxScaler(feature_range=(0, 1)) data = scaler.fit_transform(data) # Split the data into train and test sets train_size = int(len(data) * 0.8) test_size = len(data) - train_size train_data, test_data = data[0:train_size, :], data[train_size:len(data), :] # Convert the input sequence into a tensor def create_dataset(dataset, look_back=1): X, Y = [], [] for i in range(len(dataset) - look_back): a = dataset[i:(i + look_back)] X.append(a) Y.append(dataset[i + look_back]) return torch.tensor(X), torch.tensor(Y) look_back = 25 # Number of previous time steps to use as input features trainX, trainY = create_dataset(train_data, look_back) testX, testY = create_dataset(test_data, look_back) # Build the LSTM model class LSTM(nn.Module): def __init__(self, input_size=1, hidden_size=50, output_size=1): super().__init__() self.hidden_size = hidden_size self.lstm = nn.LSTM(input_size, hidden_size) self.linear = nn.Linear(hidden_size, output_size) def forward(self, input): lstm_out, _ = self.lstm(input.view(len(input), 1, -1)) prediction = self.linear(lstm_out.view(len(input), -1)) return prediction[-1] model = LSTM() criterion = nn.MSELoss() optimizer = torch.optim.Adam(model.parameters(), lr=0.01) # Train the model for epoch in range(500): optimizer.zero_grad() loss = criterion(model(trainX.float()), trainY.float()) loss.backward() optimizer.step() # Make predictions on the test data with torch.no_grad(): predictions = model(testX.float()).numpy() # Plot the results testY_unscaled = scaler.inverse_transform(testY.numpy()) predictions_unscaled = scaler.inverse_transform(predictions) plt.plot(testY_unscaled, label='Actual') plt.plot(predictions_unscaled, label='Predicted') plt.legend() plt.show() ```

相关推荐

最新推荐

recommend-type

Python中利用LSTM模型进行时间序列预测分析的实现

主要介绍了Python中利用LSTM模型进行时间序列预测分析的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
recommend-type

pre_o_1csdn63m9a1bs0e1rr51niuu33e.a

pre_o_1csdn63m9a1bs0e1rr51niuu33e.a
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

实现实时数据湖架构:Kafka与Hive集成

![实现实时数据湖架构:Kafka与Hive集成](https://img-blog.csdnimg.cn/img_convert/10eb2e6972b3b6086286fc64c0b3ee41.jpeg) # 1. 实时数据湖架构概述** 实时数据湖是一种现代数据管理架构,它允许企业以低延迟的方式收集、存储和处理大量数据。与传统数据仓库不同,实时数据湖不依赖于预先定义的模式,而是采用灵活的架构,可以处理各种数据类型和格式。这种架构为企业提供了以下优势: - **实时洞察:**实时数据湖允许企业访问最新的数据,从而做出更明智的决策。 - **数据民主化:**实时数据湖使各种利益相关者都可
recommend-type

2. 通过python绘制y=e-xsin(2πx)图像

可以使用matplotlib库来绘制这个函数的图像。以下是一段示例代码: ```python import numpy as np import matplotlib.pyplot as plt def func(x): return np.exp(-x) * np.sin(2 * np.pi * x) x = np.linspace(0, 5, 500) y = func(x) plt.plot(x, y) plt.xlabel('x') plt.ylabel('y') plt.title('y = e^{-x} sin(2πx)') plt.show() ``` 运行这段
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

实现实时监控告警系统:Kafka与Grafana整合

![实现实时监控告警系统:Kafka与Grafana整合](https://imgconvert.csdnimg.cn/aHR0cHM6Ly9tbWJpei5xcGljLmNuL21tYml6X2pwZy9BVldpY3ladXVDbEZpY1pLWmw2bUVaWXFUcEdLT1VDdkxRSmQxZXB5R1lxaWNlUjA2c0hFek5Qc3FyRktudFF1VDMxQVl3QTRXV2lhSWFRMEFRc0I1cW1ZOGcvNjQw?x-oss-process=image/format,png) # 1.1 Kafka集群架构 Kafka集群由多个称为代理的服务器组成,这
recommend-type

导入numpy库,创建两个包含9个随机数的3*3的矩阵,将两个矩阵分别打印出来,计算两个数组的点积并打印出来。(random.randn()、dot()函数)

可以的,以下是代码实现: ```python import numpy as np # 创建两个包含9个随机数的3*3的矩阵 matrix1 = np.random.randn(3, 3) matrix2 = np.random.randn(3, 3) # 打印两个矩阵 print("Matrix 1:\n", matrix1) print("Matrix 2:\n", matrix2) # 计算两个数组的点积并打印出来 dot_product = np.dot(matrix1, matrix2) print("Dot product:\n", dot_product) ``` 希望