以下是Python代码实现: ```python def max_sum(*args): max_num = max(args) sum_num = sum(args) print("最大值为:", max_num) print("所有整数之和为:", sum_num) # 测试 max_sum(1, 2, 3, 4, 5) # 最大值为: 5,所有整数之和为: 15 max_sum(10, 20, 30, 40) # 最大值为: 40,所有整数之和为: 100 ``` 函数`max_sum`接受任意多个整数,使用`max`函数求出其中的最大值,使用`sum`函数求出所有整数之和,最后输出结果。
时间: 2024-03-15 17:47:35 浏览: 114
好的,已经理解了您的问题。这是一个Python函数,名为`max_sum`,接受任意多个整数作为参数,使用`max`函数求出其中的最大值,使用`sum`函数求出所有整数之和,最后输出结果。以下是一个例子:
```python
def max_sum(*args):
max_num = max(args)
sum_num = sum(args)
print("最大值为:", max_num)
print("所有整数之和为:", sum_num)
max_sum(1, 2, 3, 4, 5) # 最大值为: 5,所有整数之和为: 15
max_sum(10, 20, 30, 40) # 最大值为: 40,所有整数之和为: 100
```
希望这个回答能够解决您的问题。
相关问题
def predict_from_naive_bayes_model(model, matrix): """Use a Naive Bayes model to compute predictions for a target matrix. This function should be able to predict on the models that fit_naive_bayes_model outputs. Args: model: A trained model from fit_naive_bayes_model matrix: A numpy array containing word counts Returns: A numpy array containg the predictions from the model """ # *** START CODE HERE *** log_probabilities = [] for i in range(model.num_classes): log_probabilities.append(np.sum(matrix * model.log_class_priors[i] + model.log_likelihoods[i])) return np.argmax(log_probabilities) # Return the class with the highest probability # *** END CODE HERE ***代码报错AttributeError: 'dict' object has no attribute 'log_class_priors'请帮我修改
根据报错信息,我们可以看出,`model` 参数传入的是一个字典,而字典没有 `log_class_priors` 属性。因此,我们需要修改这个函数,使其能够处理字典作为输入。具体的修改方法如下:
```python
def predict_from_naive_bayes_model(model, matrix):
"""Use a Naive Bayes model to compute predictions for a target matrix. This function should be able to predict on the models that fit_naive_bayes_model outputs.
Args:
model: A trained model from fit_naive_bayes_model
matrix: A numpy array containing word counts
Returns:
A numpy array containing the predictions from the model
"""
# *** START CODE HERE ***
log_probabilities = []
for i in range(model['num_classes']):
log_probabilities.append(np.sum(matrix * model['log_class_priors'][i] + model['log_likelihoods'][i]))
return np.argmax(log_probabilities) # Return the class with the highest probability
# *** END CODE HERE ***
```
在这个修改后的函数中,我们使用了 `model['log_class_priors']` 和 `model['log_likelihoods']` 来获取训练得到的朴素贝叶斯模型的参数,这些参数存储在字典 `model` 中。同时,我们也使用了 `model['num_classes']` 来获取模型中的类别数目。
import requests from bs4 import BeautifulSoup from threading import Thread def crawl_books(start, end): session = requests.Session() for i in range(start, end): url = 'http://search.dangdang.com/?key=%BC%C6%CB%E3%BB%FA&act=input&page_index={}'.format(i) try: response = session.get(url, timeout=10) except requests.exceptions.Timeout: print('Timeout occurred when accessing: ' + url) continue page = response.text soup = BeautifulSoup(page, 'lxml') books = soup.find('ul', class_='bigimg') for book in books.find_all('li'): title = book.find('a', class_='pic').get('title') author = book.find('p', class_='search_book_author').text price = book.find('p', class_='price').find('span', class_='search_now_price').text book_link = 'https:' + book.find('a', class_='pic').get('href') try: response = session.get(book_link, timeout=10) except requests.exceptions.Timeout: print('Timeout occurred when accessing: ' + book_link) continue page = response.text soup = BeautifulSoup(page, 'lxml') comment_num_tag = soup.find('a', class_='review_num') if comment_num_tag: comment_num = comment_num_tag.text else: comment_num = '0' print(title, author, price, comment_num) threads = [] for i in range(1, 101, 10): t = Thread(target=crawl_books, args=(i, i+10)) threads.append(t) t.start() for t in threads: t.join()再优化一次,使评论数量能够得到
可以使用线程池来优化代码,使用`concurrent.futures`模块中的`ThreadPoolExecutor`类来实现线程池。在每个任务中获取评论数量后,将其保存到一个列表中,在所有任务执行完后,统计评论数量的总和。代码如下:
```python
import requests
from bs4 import BeautifulSoup
from concurrent.futures import ThreadPoolExecutor
def crawl_books(start, end):
session = requests.Session()
comments = []
for i in range(start, end):
url = 'http://search.dangdang.com/?key=%BC%C6%CB%E3%BB%FA&act=input&page_index={}'.format(i)
try:
response = session.get(url, timeout=10)
except requests.exceptions.Timeout:
print('Timeout occurred when accessing: ' + url)
continue
page = response.text
soup = BeautifulSoup(page, 'lxml')
books = soup.find('ul', class_='bigimg')
for book in books.find_all('li'):
title = book.find('a', class_='pic').get('title')
author = book.find('p', class_='search_book_author').text
price = book.find('p', class_='price').find('span', class_='search_now_price').text
book_link = 'https:' + book.find('a', class_='pic').get('href')
try:
response = session.get(book_link, timeout=10)
except requests.exceptions.Timeout:
print('Timeout occurred when accessing: ' + book_link)
continue
page = response.text
soup = BeautifulSoup(page, 'lxml')
comment_num_tag = soup.find('a', class_='review_num')
if comment_num_tag:
comment_num = int(comment_num_tag.text)
else:
comment_num = 0
comments.append(comment_num)
print(title, author, price, comment_num)
return comments
if __name__ == '__main__':
with ThreadPoolExecutor(max_workers=10) as executor:
results = executor.map(crawl_books, range(1, 101, 10))
comments = [num for result in results for num in result]
total_comments = sum(comments)
print('总评论数:', total_comments)
```
这样可以更加高效地爬取数据,并且得到评论数量的总和。
阅读全文