动量梯度下降算法matlab实现
时间: 2024-02-28 19:50:05 浏览: 344
梯度下降算法matlab的实现
动量梯度下降算法(Momentum Gradient Descent)是一种优化梯度下降算法,它在梯度更新的过程中引入了动量项,可以加速收敛并减少震荡。下面是动量梯度下降算法的MATLAB实现示例:
```matlab
% 初始化参数
learning_rate = 0.01; % 学习率
momentum = 0.9; % 动量因子
max_iter = 1000; % 最大迭代次数
% 初始化动量
velocity = zeros(size(theta)); % theta为待优化的参数
% 迭代更新参数
for iter = 1:max_iter
% 计算梯度
gradient = compute_gradient(theta); % 根据具体问题计算梯度
% 更新动量
velocity = momentum * velocity + learning_rate * gradient;
% 更新参数
theta = theta - velocity;
end
```
在上述代码中,我们首先初始化了学习率、动量因子和最大迭代次数。然后,我们初始化了动量为零向量。接下来,我们使用循环迭代的方式更新参数。在每次迭代中,我们首先计算梯度,然后更新动量,最后根据动量更新参数。迭代完成后,我们得到了优化后的参数。
阅读全文