基于Kmeans算法的话题检测关键代码
时间: 2023-12-21 12:05:39 浏览: 117
以下是基于Kmeans算法的话题检测的Python代码示例:
```python
import numpy as np
from sklearn.cluster import KMeans
from sklearn.feature_extraction.text import TfidfVectorizer
def topic_detection(documents, num_topics):
# 将文本转换为TF-IDF特征矩阵
vectorizer = TfidfVectorizer(stop_words='english')
X = vectorizer.fit_transform(documents)
# 聚类
kmeans = KMeans(n_clusters=num_topics, init='k-means++', max_iter=100, n_init=1)
kmeans.fit(X)
# 获取每个文档所属的类别
labels = kmeans.labels_
# 获取每个类别的关键词
order_centroids = kmeans.cluster_centers_.argsort()[:, ::-1]
terms = vectorizer.get_feature_names()
keywords = []
for i in range(num_topics):
topic_keywords = [terms[ind] for ind in order_centroids[i, :10]]
keywords.append(topic_keywords)
return labels, keywords
```
其中,`documents`是一个包含多个文档的列表,`num_topics`是指定的话题数量。函数返回每个文档所属的话题标签和每个话题的关键词列表。
阅读全文
相关推荐
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![-](https://img-home.csdnimg.cn/images/20241226111658.png)
![-](https://img-home.csdnimg.cn/images/20241226111658.png)
![-](https://img-home.csdnimg.cn/images/20241226111658.png)
![-](https://img-home.csdnimg.cn/images/20241226111658.png)
![-](https://img-home.csdnimg.cn/images/20241226111658.png)
![-](https://img-home.csdnimg.cn/images/20241226111658.png)
![-](https://img-home.csdnimg.cn/images/20241226111658.png)
![-](https://img-home.csdnimg.cn/images/20241226111658.png)
![-](https://img-home.csdnimg.cn/images/20241226111658.png)
![-](https://img-home.csdnimg.cn/images/20241226111658.png)
![-](https://img-home.csdnimg.cn/images/20241226111658.png)
![-](https://img-home.csdnimg.cn/images/20241226111658.png)
![-](https://img-home.csdnimg.cn/images/20241226111658.png)
![-](https://img-home.csdnimg.cn/images/20241226111658.png)
![-](https://img-home.csdnimg.cn/images/20241226111658.png)
![-](https://img-home.csdnimg.cn/images/20241226111658.png)