mmsegmentation加SKNet具体步骤
时间: 2023-10-02 17:07:31 浏览: 154
SKNet-PyTorch:SKNet的PyTorch实现近乎完美且易于理解
mmsegmentation是一个基于PyTorch的图像分割框架,而SKNet是一种卷积神经网络结构,可以用于图像分类和分割等任务。在mmsegmentation中使用SKNet,需要按照以下步骤进行:
1. 安装mmsegmentation和SKNet
在使用mmsegmentation之前,需要先安装mmcv-full和mmsegmentation。而SKNet则可以通过在PyTorch中导入相应的模块来使用。可以通过以下命令进行安装:
```
pip install mmcv-full mmsegmentation
```
2. 导入SKNet模块
在使用SKNet之前,需要先导入相应的模块。可以通过以下代码进行导入:
``` python
from mmcv.cnn import build_conv_layer, build_norm_layer
from mmcv.runner import BaseModule
import torch.nn as nn
import torch.nn.functional as F
```
3. 构建SKNet模块
在mmsegmentation中使用SKNet,需要先构建SKNet模块。可以通过以下代码进行构建:
``` python
class SKConv(BaseModule):
def __init__(self, in_channels, out_channels, stride=1, M=2, r=16, L=32):
super(SKConv, self).__init__()
d = max(int(out_channels / r), L)
self.M = M
self.out_channels = out_channels
self.conv1 = build_conv_layer(
dict(type='Conv2d'),
in_channels,
out_channels,
kernel_size=3,
stride=stride,
padding=1,
bias=False)
self.pool = nn.ModuleList()
for i in range(M):
self.pool.append(nn.Sequential(
nn.AdaptiveAvgPool2d(1),
build_conv_layer(
dict(type='Conv2d'),
out_channels,
d,
kernel_size=1,
stride=1,
bias=False),
build_norm_layer(dict(type='BN'), d)[1],
nn.ReLU(inplace=True)
))
self.attention = nn.Sequential(
build_conv_layer(
dict(type='Conv2d'),
d * M,
out_channels,
kernel_size=1,
stride=1,
bias=False),
build_norm_layer(dict(type='BN'), out_channels)[1],
nn.Sigmoid()
)
def forward(self, x):
batch_size = x.shape[0]
x = self.conv1(x)
feats = [pool(x).view(batch_size, self.out_channels, 1, 1) for pool in self.pool]
feats = torch.cat(feats, dim=2)
feats = feats.view(batch_size, self.out_channels * self.M, 1, 1)
attention = self.attention(feats)
feats = feats * attention
feats = feats.view(batch_size, self.out_channels, self.M)
feats = torch.sum(feats, dim=2)
return feats
```
4. 使用SKNet进行分割
在mmsegmentation中使用SKNet进行分割,需要将SKNet模块嵌入到分割网络中。可以通过以下代码实现:
``` python
from mmcv.cnn import ConvModule
class SKNetBlock(ConvModule):
def __init__(self, in_channels, out_channels, kernel_size, stride=1, padding=None,
dilation=1, groups=1, bias=True, conv_cfg=None, norm_cfg=None,
activation=None, inplace=True, M=2, r=16, L=32):
super(SKNetBlock, self).__init__(in_channels, out_channels, kernel_size, stride,
padding, dilation, groups, bias, conv_cfg, norm_cfg,
activation, inplace)
self.sk_conv = SKConv(out_channels, out_channels, stride, M, r, L)
def forward(self, x):
x = super(SKNetBlock, self).forward(x)
x = self.sk_conv(x)
return x
```
然后在分割网络中使用SKNetBlock,例如:
``` python
model = dict(
type='EncoderDecoder',
encoder=dict(
type='SKNet',
in_channels=3,
base_channels=64,
out_indices=(0, 1, 2, 3),
depth=5,
num_stages=4,
strides=(1, 2, 2, 2),
dilations=(1, 1, 1, 1),
out_channels=(64, 128, 256, 512),
conv_cfg=dict(type='Conv2d'),
norm_cfg=dict(type='BN'),
act_cfg=dict(type='ReLU'),
dcn=dict(
type='DCNv2',
deform_groups=1,
fallback_on_stride=False,
use_dcn_in_tower=True),
stage_with_dcn=(False, False, False, False),
with_cp=(False, False, False, False),
with_se=(False, False, False, False),
norm_eval=True),
decoder=dict(
type='CascadeDecoder',
in_channels=(64, 128, 256, 512),
out_channels=256,
num_stages=3,
cascades=[
dict(
type='FCNMaskHead',
in_channels=256,
in_index=0,
channels=256,
concat_input=False,
num_classes=80,
norm_cfg=dict(type='GN', num_groups=32, requires_grad=True),
loss_mask=dict(
type='CrossEntropyLoss', use_mask=True, loss_weight=1.0)),
dict(
type='CascadeRCNNMaskHead',
in_channels=256,
in_index=1,
inst_aware=False,
num_classes=80,
share_cls_mask=True,
mask_feat_channels=256,
rcnn_loss_mask=dict(
type='CrossEntropyLoss', use_mask=True, loss_weight=1.0),
rcnn_loss_bbox=dict(type='SmoothL1Loss', beta=1.0, loss_weight=1.0)),
dict(
type='CascadeRCNNMaskHead',
in_channels=256,
in_index=2,
inst_aware=False,
num_classes=80,
share_cls_mask=True,
mask_feat_channels=256,
rcnn_loss_mask=dict(
type='CrossEntropyLoss', use_mask=True, loss_weight=1.0),
rcnn_loss_bbox=dict(type='SmoothL1Loss', beta=1.0, loss_weight=1.0))
],
upsample_cfg=dict(type='deconv', scale_factor=2),
norm_cfg=dict(type='BN'),
act_cfg=dict(type='ReLU'),
num_classes=80,
in_channels_skip=(64, 128, 256, 512),
conv_cfg=dict(type='Conv2d'),
norm_cfg_skip=dict(type='BN'),
act_cfg_skip=dict(type='ReLU'),
align_corners=False),
train_cfg=dict(),
test_cfg=dict())
```
这就是在mmsegmentation中使用SKNet的大致步骤。需要注意的是,在使用SKNet时,还需要进行相应的超参数调整,以达到最优的分割效果。
阅读全文