最短路径算法-迪杰斯特拉(Dijkstra)算法

时间: 2023-10-12 16:57:57 浏览: 108
迪杰斯特拉算法是一种用于求解带权有向图中单源最短路径的算法。它以一个起始节点为基准,逐步扩展到其他节点,通过不断更新节点的最短路径来找到起始节点到其他节点的最短路径。 算法的基本思想是从起始节点开始,先将起始节点到所有其他节点的距离初始化为无穷大,然后逐步更新距离,直到找到最短路径。具体步骤如下: 1. 初始化距离数组dist[],表示起始节点到各个节点的最短距离。将起始节点的距离初始化为0,其他节点的距离初始化为无穷大。 2. 创建一个集合visited[],用于记录已经求得最短路径的节点。 3. 重复以下步骤,直到所有节点都被访问过: a. 从未访问过的节点中选择一个距离起始节点最近的节点,将其标记为visited[]。 b. 更新与该节点相邻的节点的最短距离。如果经过当前节点到达相邻节点的路径比原先的最短距离更短,则更新最短距离。 4. 最终,dist[]数组中存储的就是起始节点到各个节点的最短路径长度。 迪杰斯特拉算法的时间复杂度为O(V^2),其中V为节点数。该算法适用于边的权重非负的情况。如果希望在存在负权边的图中求解最短路径,则需要使用其他算法,如贝尔曼-福特算法或弗洛伊德算法。
相关问题

图的最短路径问题(迪杰斯特拉算法)

迪杰斯特拉算法是一种用于解决带权有向图或无向图的单源最短路径的贪心算法。该算法的基本思想是:对于图中的一个源点,维护一个到该源点的距离数组,初始时,源点到自身的距离为0,其余点到源点的距离为无穷大。然后,每次从距离数组中选择一个距离最小的点,将该点加入到已确定最短路径的集合中,并更新该点的邻居节点的距离数组。重复该过程,直到所有节点都被加入到已确定最短路径的集合中。 下面是一个使用Python实现迪杰斯特拉算法的例子: ```python import sys def dijkstra(graph, start): # 初始化距离数组 dist = {node: sys.maxsize for node in graph} dist[start] = 0 # 初始化已确定最短路径的集合 visited = set() while len(visited) < len(graph): # 选择距离最小的点 node = min(set(dist.keys()) - visited, key=dist.get) # 更新该点的邻居节点的距离数组 for neighbor, weight in graph[node].items(): new_dist = dist[node] + weight if new_dist < dist[neighbor]: dist[neighbor] = new_dist # 将该点加入到已确定最短路径的集合中 visited.add(node) return dist # 测试 graph = { 'A': {'B': 5, 'C': 1}, 'B': {'A': 5, 'C': 2, 'D': 1}, 'C': {'A': 1, 'B': 2, 'D': 4, 'E': 8}, 'D': {'B': 1, 'C': 4, 'E': 3, 'F': 6}, 'E': {'C': 8, 'D': 3}, 'F': {'D': 6} } start = 'A' dist = dijkstra(graph, start) print(dist) ``` 上述代码中,我们使用了一个邻接表来表示图,其中每个节点都是一个字典,字典的键表示该节点的邻居节点,值表示该节点到邻居节点的边权重。在dijkstra函数中,我们首先初始化距离数组和已确定最短路径的集合,然后重复选择距离最小的点,并更新该点的邻居节点的距离数组,直到所有节点都被加入到已确定最短路径的集合中。最后,我们返回距离数组,即每个节点到起点的最短距离。

dijkstra邻接表_最短路径问题——迪杰斯特拉算法(Dijkstra)

迪杰斯特拉算法(Dijkstra)是一种贪心算法,用于解决最短路径问题。它可以处理有权有向图或无向图,但不允许有负权边(权重必须为非负数)。 算法思路: 1. 从起点开始,初始化所有节点的距离为无穷大,起点距离为0; 2. 将起点加入“已访问”集合; 3. 对于起点的所有邻居节点,更新它们的距离(如果通过当前节点到达邻居节点的距离小于邻居节点原有的距离,则更新邻居节点的距离); 4. 从未访问集合中选择距离起点最近的节点,加入“已访问”集合; 5. 重复步骤3和4,直到所有节点都被加入“已访问”集合或者没有与起点相连的节点。 算法实现: Dijkstra算法的实现通常使用优先队列(PriorityQueue)来维护未访问集合中距离起点最近的节点。具体实现步骤如下: 1. 创建一个空的优先队列Q,将起点加入Q中,并设置起点到自身的距离为0; 2. 创建一个数组dist[],用于保存起点到各个节点的距离,初始化为无穷大; 3. 创建一个数组visited[],用于标记节点是否被访问过,初始化为false; 4. 将dist[起点]的值设置为0; 5. 当Q不为空时,重复以下步骤: a. 从Q中取出距离起点最近的节点u; b. 如果节点u已经被访问过,则跳过此次循环; c. 将节点u标记为已访问; d. 对于节点u的每个邻居节点v,如果节点v未被访问过并且通过节点u到达节点v的距离小于dist[v],则更新dist[v]的值; e. 将节点v加入Q中。 6. 最终,dist数组中保存的就是起点到各个节点的最短距离。 Dijkstra算法的时间复杂度为O(ElogV),其中E为边数,V为节点数。这是因为算法需要对每个节点的所有邻居节点进行遍历,而优先队列的插入和删除操作的时间复杂度为O(logV)。

相关推荐

最新推荐

recommend-type

C++用Dijkstra(迪杰斯特拉)算法求最短路径

Dijkstra(迪杰斯特拉)算法是典型的最短路径路由算法,用于计算一个节点到其他所有节点的最短路径。...下面这篇文章就给大家介绍关于C++用Dijkstra算法(迪杰斯特拉算法)求最短路径的方法,下面来一起看看吧。
recommend-type

最短路径算法—Dijkstra(迪杰斯特拉)算法分析与实现(CC++)

Dijkstra(迪杰斯特拉)算法是典型的最短路径路由算法,用于计算一个节点到其他所有节点的最短路径。主要特点是以起始点为中心向外层层扩展,直到扩展到终点为止。Dijkstra算法能得出最短路径的最优解,但由于它遍历...
recommend-type

迪杰斯特拉(Dijkstra)算法思想代码实现

本编程代码实现了Dijkstra算法,迪杰斯特拉(Dijkstra)算法思想:按路径长度递增次序产生最短路径算法:把V分成两组:(1)S:已求出最短路径的顶点的集合(2)V-S=T:尚未确定最短路径的顶点集合将T中顶点按最短路径...
recommend-type

RTL8188FU-Linux-v5.7.4.2-36687.20200602.tar(20765).gz

REALTEK 8188FTV 8188eus 8188etv linux驱动程序稳定版本, 支持AP,STA 以及AP+STA 共存模式。 稳定支持linux4.0以上内核。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

:YOLOv1目标检测算法:实时目标检测的先驱,开启计算机视觉新篇章

![:YOLOv1目标检测算法:实时目标检测的先驱,开启计算机视觉新篇章](https://img-blog.csdnimg.cn/img_convert/69b98e1a619b1bb3c59cf98f4e397cd2.png) # 1. 目标检测算法概述 目标检测算法是一种计算机视觉技术,用于识别和定位图像或视频中的对象。它在各种应用中至关重要,例如自动驾驶、视频监控和医疗诊断。 目标检测算法通常分为两类:两阶段算法和单阶段算法。两阶段算法,如 R-CNN 和 Fast R-CNN,首先生成候选区域,然后对每个区域进行分类和边界框回归。单阶段算法,如 YOLO 和 SSD,一次性执行检
recommend-type

设计算法实现将单链表中数据逆置后输出。用C语言代码

如下所示: ```c #include <stdio.h> #include <stdlib.h> // 定义单链表节点结构体 struct node { int data; struct node *next; }; // 定义单链表逆置函数 struct node* reverse(struct node *head) { struct node *prev = NULL; struct node *curr = head; struct node *next; while (curr != NULL) { next
recommend-type

c++校园超市商品信息管理系统课程设计说明书(含源代码) (2).pdf

校园超市商品信息管理系统课程设计旨在帮助学生深入理解程序设计的基础知识,同时锻炼他们的实际操作能力。通过设计和实现一个校园超市商品信息管理系统,学生掌握了如何利用计算机科学与技术知识解决实际问题的能力。在课程设计过程中,学生需要对超市商品和销售员的关系进行有效管理,使系统功能更全面、实用,从而提高用户体验和便利性。 学生在课程设计过程中展现了积极的学习态度和纪律,没有缺勤情况,演示过程流畅且作品具有很强的使用价值。设计报告完整详细,展现了对问题的深入思考和解决能力。在答辩环节中,学生能够自信地回答问题,展示出扎实的专业知识和逻辑思维能力。教师对学生的表现予以肯定,认为学生在课程设计中表现出色,值得称赞。 整个课程设计过程包括平时成绩、报告成绩和演示与答辩成绩三个部分,其中平时表现占比20%,报告成绩占比40%,演示与答辩成绩占比40%。通过这三个部分的综合评定,最终为学生总成绩提供参考。总评分以百分制计算,全面评估学生在课程设计中的各项表现,最终为学生提供综合评价和反馈意见。 通过校园超市商品信息管理系统课程设计,学生不仅提升了对程序设计基础知识的理解与应用能力,同时也增强了团队协作和沟通能力。这一过程旨在培养学生综合运用技术解决问题的能力,为其未来的专业发展打下坚实基础。学生在进行校园超市商品信息管理系统课程设计过程中,不仅获得了理论知识的提升,同时也锻炼了实践能力和创新思维,为其未来的职业发展奠定了坚实基础。 校园超市商品信息管理系统课程设计的目的在于促进学生对程序设计基础知识的深入理解与掌握,同时培养学生解决实际问题的能力。通过对系统功能和用户需求的全面考量,学生设计了一个实用、高效的校园超市商品信息管理系统,为用户提供了更便捷、更高效的管理和使用体验。 综上所述,校园超市商品信息管理系统课程设计是一项旨在提升学生综合能力和实践技能的重要教学活动。通过此次设计,学生不仅深化了对程序设计基础知识的理解,还培养了解决实际问题的能力和团队合作精神。这一过程将为学生未来的专业发展提供坚实基础,使其在实际工作中能够胜任更多挑战。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

:YOLO目标检测算法的挑战与机遇:数据质量、计算资源与算法优化,探索未来发展方向

![:YOLO目标检测算法的挑战与机遇:数据质量、计算资源与算法优化,探索未来发展方向](https://img-blog.csdnimg.cn/7e3d12895feb4651b9748135c91e0f1a.png?x-oss-process=image/watermark,type_ZHJvaWRzYW5zZmFsbGJhY2s,shadow_50,text_Q1NETiBA5rKJ6YaJ77yM5LqO6aOO5Lit,size_20,color_FFFFFF,t_70,g_se,x_16) # 1. YOLO目标检测算法简介 YOLO(You Only Look Once)是一种