孪生神经网络进行对比实验
时间: 2023-11-14 17:04:41 浏览: 119
孪生神经网络在进行对比实验时,通常使用两个具有相同结构但参数不同的网络分别处理两张图像。在ChangeNet的对比实验中,使用了孪生神经网络和FCN结合的方法进行变化检测。其中,ChangeNet的输入是一张参考图像和一张测试图像,输出是一个对于变化区域的检测、定位和分类图。整个网络结构中,蓝色框和绿色框构成了孪生神经网络,其中CP表示ResNet残差块,FC表示卷积核大小为1×1的全卷积层。首先,使用孪生神经网络对两张图片分别进行特征提取,然后利用FCN对提取的特征进行整合,并最后进行分类。这样的结构能够更好地解释特征提取过程中的变化情况,因为两个分支共享参数,使用相同的方法从两张图像中提取特征,而由于变化检测中的两张图像是同源、具有相同属性的,所以通过相同方式提取特征更为自然。<span class="em">1</span><span class="em">2</span><span class="em">3</span>
#### 引用[.reference_title]
- *1* *3* [【论文笔记】ChangeNet:基于孪生神经网络和FCN的变化检测网络](https://blog.csdn.net/zuzhiang/article/details/114260863)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v92^chatsearchT3_1"}}] [.reference_item style="max-width: 50%"]
- *2* [【论文笔记】DSCN:基于深度孪生神经网络的光学航空图像变化检测模型](https://blog.csdn.net/zuzhiang/article/details/114439455)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v92^chatsearchT3_1"}}] [.reference_item style="max-width: 50%"]
[ .reference_list ]
阅读全文