cv2.Canny边缘检测实例

时间: 2024-06-17 15:07:11 浏览: 13
cv2.Canny是OpenCV中用于进行边缘检测的函数。它的原理是基于Canny算法,该算法是一种非常流行的边缘检测算法,其实现主要有以下几个步骤: 1. 高斯滤波:对图像进行高斯滤波,以平滑图像并去除噪声。 2. 计算梯度:使用Sobel等算子计算图像梯度,以检测出边缘。 3. 非极大值抑制:对梯度幅值图像进行非极大值抑制,以使边缘更加细化。 4. 双阈值处理:将梯度幅值图像分为两个阈值区间,并进行二值化处理,以获得最终的二值化图像。 5. 滞后阈值处理:对于二值化图像中的边缘像素,进一步检测其是否真正属于边缘,并去除一些误检出来的边缘。 下面是cv2.Canny的一段实例代码: ``` import cv2 import numpy as np # 读取图像 img = cv2.imread('test.jpg', 0) # 进行边缘检测 edges = cv2.Canny(img, 100, 200) # 显示结果 cv2.imshow('Original', img) cv2.imshow('Edges', edges) cv2.waitKey(0) cv2.destroyAllWindows() ``` 这段代码中,首先使用cv2.imread函数读取了一张灰度图像。然后使用cv2.Canny函数进行边缘检测,其中第二个和第三个参数分别为两个阈值(即双阈值处理中的两个阈值),这里设置为100和200。最后使用cv2.imshow函数显示原图和边缘检测结果。
相关问题

sobel和canny算子边缘检测原理及应用实例

Sobel算子和Canny算子都是常用的边缘检测算法。 Sobel算子 Sobel算子是一种基于梯度的边缘检测算法,它通过计算像素点的一阶导数来检测图像中的边缘。Sobel算子分别计算水平和垂直方向上的梯度值,然后将梯度值合并成一个强度值,用于表示像素点的边缘强度。 Sobel算子的应用实例: 1. 图像增强:通过Sobel算子计算图像中的边缘,可以增强图像的对比度和细节。 2. 特征提取:Sobel算子可以用于提取图像中的特征,如轮廓、角点等。 3. 目标检测:在计算机视觉中,Sobel算子可以用于目标检测,例如在车牌识别中使用Sobel算子检测车牌的边缘。 Canny算子 Canny算子是一种基于梯度的边缘检测算法,它通过计算图像中像素点的梯度大小和方向,然后利用非极大值抑制和双阈值处理来检测边缘。 Canny算子的应用实例: 1. 物体识别:Canny算子可以用于物体识别,例如在机器人视觉中使用Canny算子检测物体的边缘。 2. 图像分割:Canny算子可以用于图像分割,例如将图像分割成目标和背景。 3. 图像处理:Canny算子可以用于图像处理,例如在数字图像处理中使用Canny算子对图像进行边缘检测和二值化处理。

能给一个完整的实例吗,比方说以下python代码:import cv2 import numpy as np # 加载图像 image = cv2.imread("/root/camera/test/v4l2_cap.jpg") # 查看图像中是否存在蓝色和红色 blue_pixels = np.sum(image[:, :, 0]) # 蓝色通道 red_pixels = np.sum(image[:, :, 2]) # 红色通道 colors = "0" if blue_pixels > red_pixels: color = "Blue" elif blue_pixels < red_pixels: color = "Red" else: color = "None" # 将图像转换为灰度图像 gray_image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) # 边缘增强 enhanced_image = cv2.Canny(gray_image, 33, 45) # 形态学操作(腐蚀和膨胀) kernel = np.ones((3, 3), np.uint8) edges1 = cv2.dilate(enhanced_image, kernel, iterations=3) # 在灰度图像中检测圆形 circles = cv2.HoughCircles(edges1, cv2.HOUGH_GRADIENT, dp=1, minDist=100, param1=66, param2=25, minRadius=90, maxRadius=185) shape="" if circles is not None: # 在原始图像上绘制检测到的圆 circles = np.uint16(np.around(circles)) for circle in circles[0, :]: x, y, radius = circle[0], circle[1], circle[2] if abs(x - image.shape[1] // 2) > 100: continue shape = "Circle" cv2.circle(image, (x, y), 90, (0, 255, 0), 2) cv2.circle(image, (x, y), 2, (0, 0, 255), 3) else: shape = "None" # 判断是否同时出现 Rectangle 和 Triangle以及颜色是否有红,绿 if color == "Red" and shape != "Circle" : result = 'r' elif color == "Blue" and shape == "Circle" : result = 'b' else: result = 'n' # 打印检测到的形状、颜色 #print(f"Color:{color}") #print(f"shape:{shape}") print(f"Result: {result}") #cv2.imshow("enhanced_image", enhanced_image) #cv2.imshow("edges1", edges1) #cv2.imshow("Image", image) #cv2.waitKey(0) #cv2.destroyAllWindows()

下面是将你提供的Python代码转换为Cython的示例: ```python import cv2 import numpy as np cdef extern from "opencv2/core/core_c.h": void* cvLoadImage(const char* filename, int flags) cdef extern from "opencv2/highgui/highgui_c.h": void cvShowImage(const char* name, void* image) void cvWaitKey(int delay) void cvDestroyAllWindows() cdef extern from "opencv2/imgproc/imgproc_c.h": void cvCvtColor(void* src, void* dst, int code) void cvCanny(void* image, void* edges, double threshold1, double threshold2) void cvDilate(void* src, void* dst, void* kernel, int iterations) void cvHoughCircles(void* image, void* circles, int method, double dp, double minDist, double param1, double param2, int minRadius, int maxRadius) void cvCircle(void* img, void* center, int radius, void* color, int thickness) def detect_shape_and_color(): cdef np.ndarray[np.uint8_t, ndim=3] image = np.zeros((480, 640, 3), dtype=np.uint8) cdef np.ndarray[np.uint8_t, ndim=2] gray_image = np.zeros((480, 640), dtype=np.uint8) cdef np.ndarray[np.uint8_t, ndim=2] enhanced_image = np.zeros((480, 640), dtype=np.uint8) cdef np.ndarray[np.uint8_t, ndim=2] edges = np.zeros((480, 640), dtype=np.uint8) cdef np.ndarray[np.float32_t, ndim=3] circles = np.zeros((1, 1, 3), dtype=np.float32) cdef np.ndarray[np.uint8_t, ndim=3] color = np.zeros((1, 1, 3), dtype=np.uint8) # 加载图像 image = cv2.imread(b"/root/camera/test/v4l2_cap.jpg", -1) # 查看图像中是否存在蓝色和红色 blue_pixels = np.sum(image[:, :, 0]) # 蓝色通道 red_pixels = np.sum(image[:, :, 2]) # 红色通道 colors = "0" if blue_pixels > red_pixels: color = "Blue" elif blue_pixels < red_pixels: color = "Red" else: color = "None" # 将图像转换为灰度图像 cvCvtColor(image, gray_image, cv2.COLOR_BGR2GRAY) # 边缘增强 cvCanny(gray_image, edges, 33, 45) # 形态学操作(腐蚀和膨胀) kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (3, 3)) cvDilate(edges, enhanced_image, kernel, 3) # 在灰度图像中检测圆形 cvHoughCircles(enhanced_image, circles, cv2.HOUGH_GRADIENT, 1, 100, 66, 25, 90, 185) shape = "" if circles is not None: # 在原始图像上绘制检测到的圆 circles = np.uint16(np.around(circles)) for circle in circles[0, :]: x, y, radius = circle[0], circle[1], circle[2] if abs(x - image.shape[1] // 2) > 100: continue shape = "Circle" cvCircle(image, (x, y), 90, (0, 255, 0), 2) cvCircle(image, (x, y), 2, (0, 0, 255), 3) else: shape = "None" # 判断是否同时出现 Rectangle 和 Triangle以及颜色是否有红,绿 if color == "Red" and shape != "Circle": result = 'r' elif color == "Blue" and shape == "Circle": result = 'b' else: result = 'n' # 打印检测到的形状、颜色 print(f"Result: {result}") #cv2.imshow("enhanced_image", enhanced_image) #cv2.imshow("edges", edges) #cv2.imshow("Image", image) #cv2.waitKey(0) #cv2.destroyAllWindows() if __name__ == "__main__": detect_shape_and_color() ``` 请注意,上述代码中使用了Cython的类型注释来声明变量类型,以提高性能。还添加了Cython所需的C函数声明和转换函数。 在使用Cython之前,确保已按照之前提到的步骤安装了Cython并正确配置了环境。然后,将上述代码保存到一个.pyx文件中,并创建一个适当的setup.py文件来构建和编译Cython代码。 希望这个示例能够帮助你了解如何使用Cython将Python代码转换为C代码。如果有任何问题,请随时提问!

相关推荐

最新推荐

recommend-type

Python实现Canny及Hough算法代码实例解析

在本文中,我们将深入探讨如何使用Python实现Canny边缘检测和Hough变换算法。这两个算法在计算机视觉领域中被广泛用于图像处理,特别是在物体检测、边缘检测和形状识别上。 首先,Canny边缘检测是一种经典的多级...
recommend-type

C语言实现opencv提取直线、轮廓及ROI实例详解

直线检测是计算机视觉中一个重要的任务,用于检测图像中的直线。OpenCV提供了Hough变换算法来检测直线。Hough变换是一种穷举的算法,通过遍历所有可能的直线来检测图像中的直线。 在OpenCV中,我们可以使用...
recommend-type

OpenCV.js中文教程

- **Canny 边缘检测**:一种经典的边缘检测算法,用于找出图像中的边界。 - **轮廓**:检测图像中的对象边界,可以获取轮廓的属性,进行形状分析和对象识别。 5. **图像分析与变换** - **直方图**:分析图像的...
recommend-type

无线语音遥控智能车.doc

无线语音遥控智能车
recommend-type

10-4 地下高分子合成三元乙丙橡胶卷材防水层分项工程质量管理.doc

10-4 地下高分子合成三元乙丙橡胶卷材防水层分项工程质量管理.doc
recommend-type

婚礼GO网站创业计划书.docx

"婚礼GO网站创业计划书" 在创建婚礼GO网站的创业计划书中,创业者首先阐述了企业的核心业务——GO婚礼设计,专注于提供计算机软件销售和技术开发、技术服务,以及与婚礼相关的各种服务,如APP制作、网页设计、弱电工程安装等。企业类型被定义为服务类,涵盖了一系列与信息技术和婚礼策划相关的业务。 创业者的个人经历显示了他对行业的理解和投入。他曾在北京某科技公司工作,积累了吃苦耐劳的精神和实践经验。此外,他在大学期间担任班长,锻炼了团队管理和领导能力。他还参加了SYB创业培训班,系统地学习了创业意识、计划制定等关键技能。 市场评估部分,目标顾客定位为本地的结婚人群,特别是中等和中上收入者。根据数据显示,广州市内有14家婚庆公司,该企业预计能占据7%的市场份额。广州每年约有1万对新人结婚,公司目标接待200对新人,显示出明确的市场切入点和增长潜力。 市场营销计划是创业成功的关键。尽管文档中没有详细列出具体的营销策略,但可以推断,企业可能通过线上线下结合的方式,利用社交媒体、网络广告和本地推广活动来吸引目标客户。此外,提供高质量的技术解决方案和服务,以区别于竞争对手,可能是其市场差异化策略的一部分。 在组织结构方面,未详细说明,但可以预期包括了技术开发团队、销售与市场部门、客户服务和支持团队,以及可能的行政和财务部门。 在财务规划上,文档提到了固定资产和折旧、流动资金需求、销售收入预测、销售和成本计划以及现金流量计划。这表明创业者已经考虑了启动和运营的初期成本,以及未来12个月的收入预测,旨在确保企业的现金流稳定,并有可能享受政府对大学生初创企业的税收优惠政策。 总结来说,婚礼GO网站的创业计划书详尽地涵盖了企业概述、创业者背景、市场分析、营销策略、组织结构和财务规划等方面,为初创企业的成功奠定了坚实的基础。这份计划书显示了创业者对市场的深刻理解,以及对技术和婚礼行业的专业认识,有望在竞争激烈的婚庆市场中找到一席之地。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【基础】图像的几何变换:缩放、旋转与翻转

![【基础】图像的几何变换:缩放、旋转与翻转](https://img-blog.csdnimg.cn/ebace0d8b8c94a058abdb8b10e5ed995.png) # 2.1 图像缩放的理论基础 图像缩放是一种几何变换,它可以改变图像的大小,使其适合特定的显示或处理需求。图像缩放可以通过以下变换矩阵来实现: ``` S = [[sx, 0, 0], [0, sy, 0], [0, 0, 1]] ``` 其中: * `sx` 和 `sy` 分别是水平和垂直缩放因子。 * `sx > 1` 和 `sy > 1` 表示图像放大。 * `sx < 1` 和
recommend-type

字节跳动面试题java

字节跳动作为一家知名的互联网公司,在面试Java开发者时可能会关注以下几个方面的问题: 1. **基础技能**:Java语言的核心语法、异常处理、内存管理、集合框架、IO操作等是否熟练掌握。 2. **面向对象编程**:多态、封装、继承的理解和应用,可能会涉及设计模式的提问。 3. **并发编程**:Java并发API(synchronized、volatile、Future、ExecutorService等)的使用,以及对并发模型(线程池、并发容器等)的理解。 4. **框架知识**:Spring Boot、MyBatis、Redis等常用框架的原理和使用经验。 5. **数据库相
recommend-type

微信行业发展现状及未来行业发展趋势分析.docx

微信行业发展现状及未来行业发展趋势分析 微信作为移动互联网的基础设施,已经成为流量枢纽,月活跃账户达到10.4亿,同增10.9%,是全国用户量最多的手机App。微信的活跃账户从2012年起步月活用户仅为5900万人左右,伴随中国移动互联网进程的不断推进,微信的活跃账户一直维持稳步增长,在2014-2017年年末分别达到5亿月活、6.97亿月活、8.89亿月活和9.89亿月活。 微信月活发展历程显示,微信的用户数量增长已经开始呈现乏力趋势。微信在2018年3月日活达到6.89亿人,同比增长5.5%,环比上个月增长1.7%。微信的日活同比增速下滑至20%以下,并在2017年年底下滑至7.7%左右。微信DAU/MAU的比例也一直较为稳定,从2016年以来一直维持75%-80%左右的比例,用户的粘性极强,继续提升的空间并不大。 微信作为流量枢纽,已经成为移动互联网的基础设施,月活跃账户达到10.4亿,同增10.9%,是全国用户量最多的手机App。微信的活跃账户从2012年起步月活用户仅为5900万人左右,伴随中国移动互联网进程的不断推进,微信的活跃账户一直维持稳步增长,在2014-2017年年末分别达到5亿月活、6.97亿月活、8.89亿月活和9.89亿月活。 微信的用户数量增长已经开始呈现乏力趋势,这是因为微信自身也在重新寻求新的增长点。微信日活发展历程显示,微信的用户数量增长已经开始呈现乏力趋势。微信在2018年3月日活达到6.89亿人,同比增长5.5%,环比上个月增长1.7%。微信的日活同比增速下滑至20%以下,并在2017年年底下滑至7.7%左右。 微信DAU/MAU的比例也一直较为稳定,从2016年以来一直维持75%-80%左右的比例,用户的粘性极强,继续提升的空间并不大。因此,在整体用户数量开始触达天花板的时候,微信自身也在重新寻求新的增长点。 中国的整体移动互联网人均单日使用时长已经较高水平。18Q1中国移动互联网的月度总时长达到了77千亿分钟,环比17Q4增长了14%,单人日均使用时长达到了273分钟,环比17Q4增长了15%。而根据抽样统计,社交始终占据用户时长的最大一部分。2018年3月份,社交软件占据移动互联网35%左右的时长,相比2015年减少了约10pct,但仍然是移动互联网当中最大的时长占据者。 争夺社交软件份额的主要系娱乐类App,目前占比达到约32%左右。移动端的流量时长分布远比PC端更加集中,通常认为“搜索下載”和“网站导航”为PC时代的流量枢纽,但根据统计,搜索的用户量约为4.5亿,为各类应用最高,但其时长占比约为5%左右,落后于网络视频的13%左右位于第二名。PC时代的网络社交时长占比约为4%-5%,基本与搜索相当,但其流量分发能力远弱于搜索。 微信作为移动互联网的基础设施,已经成为流量枢纽,月活跃账户达到10.4亿,同增10.9%,是全国用户量最多的手机App。微信的活跃账户从2012年起步月活用户仅为5900万人左右,伴随中国移动互联网进程的不断推进,微信的活跃账户一直维持稳步增长,在2014-2017年年末分别达到5亿月活、6.97亿月活、8.89亿月活和9.89亿月活。 微信的用户数量增长已经开始呈现乏力趋势,这是因为微信自身也在重新寻求新的增长点。微信日活发展历程显示,微信的用户数量增长已经开始呈现乏力趋势。微信在2018年3月日活达到6.89亿人,同比增长5.5%,环比上个月增长1.7%。微信的日活同比增速下滑至20%以下,并在2017年年底下滑至7.7%左右。 微信DAU/MAU的比例也一直较为稳定,从2016年以来一直维持75%-80%左右的比例,用户的粘性极强,继续提升的空间并不大。因此,在整体用户数量开始触达天花板的时候,微信自身也在重新寻求新的增长点。 微信作为移动互联网的基础设施,已经成为流量枢纽,月活跃账户达到10.4亿,同增10.9%,是全国用户量最多的手机App。微信的活跃账户从2012年起步月活用户仅为5900万人左右,伴随中国移动互联网进程的不断推进,微信的活跃账户一直维持稳步增长,在2014-2017年年末分别达到5亿月活、6.97亿月活、8.89亿月活和9.89亿月活。 微信的用户数量增长已经开始呈现乏力趋势,这是因为微信自身也在重新寻求新的增长点。微信日活发展历程显示,微信的用户数量增长已经开始呈现乏力趋势。微信在2018年3月日活达到6.89亿人,同比增长5.5%,环比上个月增长1.7%。微信的日活同比增速下滑至20%以下,并在2017年年底下滑至7.7%左右。 微信DAU/MAU的比例也一直较为稳定,从2016年以来一直维持75%-80%左右的比例,用户的粘性极强,继续提升的空间并不大。因此,在整体用户数量开始触达天花板的时候,微信自身也在重新寻求新的增长点。 微信作为移动互联网的基础设施,已经成为流量枢纽,月活跃账户达到10.4亿,同增10.9%,是全国用户量最多的手机App。微信的活跃账户从2012年起步月活用户仅为5900万人左右,伴随中国移动互联网进程的不断推进,微信的活跃账户一直维持稳步增长,在2014-2017年年末分别达到5亿月活、6.97亿月活、8.89亿月活和9.89亿月活。 微信的用户数量增长已经开始呈现乏力趋势,这是因为微信自身也在重新寻求新的增长点。微信日活发展历程显示,微信的用户数量增长已经开始呈现乏力趋势。微信在2018年3月日活达到6.89亿人,同比增长5.5%,环比上个月增长1.7%。微信的日活同比增速下滑至20%以下,并在2017年年底下滑至7.7%左右。 微信DAU/MAU的比例也一直较为稳定,从2016年以来一直维持75%-80%左右的比例,用户的粘性极强,继续提升的空间并不大。因此,在整体用户数量开始触达天花板的时候,微信自身也在重新寻求新的增长点。