cv2.Canny边缘检测实例

时间: 2024-06-17 07:07:11 浏览: 181
cv2.Canny是OpenCV中用于进行边缘检测的函数。它的原理是基于Canny算法,该算法是一种非常流行的边缘检测算法,其实现主要有以下几个步骤: 1. 高斯滤波:对图像进行高斯滤波,以平滑图像并去除噪声。 2. 计算梯度:使用Sobel等算子计算图像梯度,以检测出边缘。 3. 非极大值抑制:对梯度幅值图像进行非极大值抑制,以使边缘更加细化。 4. 双阈值处理:将梯度幅值图像分为两个阈值区间,并进行二值化处理,以获得最终的二值化图像。 5. 滞后阈值处理:对于二值化图像中的边缘像素,进一步检测其是否真正属于边缘,并去除一些误检出来的边缘。 下面是cv2.Canny的一段实例代码: ``` import cv2 import numpy as np # 读取图像 img = cv2.imread('test.jpg', 0) # 进行边缘检测 edges = cv2.Canny(img, 100, 200) # 显示结果 cv2.imshow('Original', img) cv2.imshow('Edges', edges) cv2.waitKey(0) cv2.destroyAllWindows() ``` 这段代码中,首先使用cv2.imread函数读取了一张灰度图像。然后使用cv2.Canny函数进行边缘检测,其中第二个和第三个参数分别为两个阈值(即双阈值处理中的两个阈值),这里设置为100和200。最后使用cv2.imshow函数显示原图和边缘检测结果。
相关问题

能给一个完整的实例吗,比方说以下python代码:import cv2 import numpy as np # 加载图像 image = cv2.imread("/root/camera/test/v4l2_cap.jpg") # 查看图像中是否存在蓝色和红色 blue_pixels = np.sum(image[:, :, 0]) # 蓝色通道 red_pixels = np.sum(image[:, :, 2]) # 红色通道 colors = "0" if blue_pixels > red_pixels: color = "Blue" elif blue_pixels < red_pixels: color = "Red" else: color = "None" # 将图像转换为灰度图像 gray_image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) # 边缘增强 enhanced_image = cv2.Canny(gray_image, 33, 45) # 形态学操作(腐蚀和膨胀) kernel = np.ones((3, 3), np.uint8) edges1 = cv2.dilate(enhanced_image, kernel, iterations=3) # 在灰度图像中检测圆形 circles = cv2.HoughCircles(edges1, cv2.HOUGH_GRADIENT, dp=1, minDist=100, param1=66, param2=25, minRadius=90, maxRadius=185) shape="" if circles is not None: # 在原始图像上绘制检测到的圆 circles = np.uint16(np.around(circles)) for circle in circles[0, :]: x, y, radius = circle[0], circle[1], circle[2] if abs(x - image.shape[1] // 2) > 100: continue shape = "Circle" cv2.circle(image, (x, y), 90, (0, 255, 0), 2) cv2.circle(image, (x, y), 2, (0, 0, 255), 3) else: shape = "None" # 判断是否同时出现 Rectangle 和 Triangle以及颜色是否有红,绿 if color == "Red" and shape != "Circle" : result = 'r' elif color == "Blue" and shape == "Circle" : result = 'b' else: result = 'n' # 打印检测到的形状、颜色 #print(f"Color:{color}") #print(f"shape:{shape}") print(f"Result: {result}") #cv2.imshow("enhanced_image", enhanced_image) #cv2.imshow("edges1", edges1) #cv2.imshow("Image", image) #cv2.waitKey(0) #cv2.destroyAllWindows()

下面是将你提供的Python代码转换为Cython的示例: ```python import cv2 import numpy as np cdef extern from "opencv2/core/core_c.h": void* cvLoadImage(const char* filename, int flags) cdef extern from "opencv2/highgui/highgui_c.h": void cvShowImage(const char* name, void* image) void cvWaitKey(int delay) void cvDestroyAllWindows() cdef extern from "opencv2/imgproc/imgproc_c.h": void cvCvtColor(void* src, void* dst, int code) void cvCanny(void* image, void* edges, double threshold1, double threshold2) void cvDilate(void* src, void* dst, void* kernel, int iterations) void cvHoughCircles(void* image, void* circles, int method, double dp, double minDist, double param1, double param2, int minRadius, int maxRadius) void cvCircle(void* img, void* center, int radius, void* color, int thickness) def detect_shape_and_color(): cdef np.ndarray[np.uint8_t, ndim=3] image = np.zeros((480, 640, 3), dtype=np.uint8) cdef np.ndarray[np.uint8_t, ndim=2] gray_image = np.zeros((480, 640), dtype=np.uint8) cdef np.ndarray[np.uint8_t, ndim=2] enhanced_image = np.zeros((480, 640), dtype=np.uint8) cdef np.ndarray[np.uint8_t, ndim=2] edges = np.zeros((480, 640), dtype=np.uint8) cdef np.ndarray[np.float32_t, ndim=3] circles = np.zeros((1, 1, 3), dtype=np.float32) cdef np.ndarray[np.uint8_t, ndim=3] color = np.zeros((1, 1, 3), dtype=np.uint8) # 加载图像 image = cv2.imread(b"/root/camera/test/v4l2_cap.jpg", -1) # 查看图像中是否存在蓝色和红色 blue_pixels = np.sum(image[:, :, 0]) # 蓝色通道 red_pixels = np.sum(image[:, :, 2]) # 红色通道 colors = "0" if blue_pixels > red_pixels: color = "Blue" elif blue_pixels < red_pixels: color = "Red" else: color = "None" # 将图像转换为灰度图像 cvCvtColor(image, gray_image, cv2.COLOR_BGR2GRAY) # 边缘增强 cvCanny(gray_image, edges, 33, 45) # 形态学操作(腐蚀和膨胀) kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (3, 3)) cvDilate(edges, enhanced_image, kernel, 3) # 在灰度图像中检测圆形 cvHoughCircles(enhanced_image, circles, cv2.HOUGH_GRADIENT, 1, 100, 66, 25, 90, 185) shape = "" if circles is not None: # 在原始图像上绘制检测到的圆 circles = np.uint16(np.around(circles)) for circle in circles[0, :]: x, y, radius = circle[0], circle[1], circle[2] if abs(x - image.shape[1] // 2) > 100: continue shape = "Circle" cvCircle(image, (x, y), 90, (0, 255, 0), 2) cvCircle(image, (x, y), 2, (0, 0, 255), 3) else: shape = "None" # 判断是否同时出现 Rectangle 和 Triangle以及颜色是否有红,绿 if color == "Red" and shape != "Circle": result = 'r' elif color == "Blue" and shape == "Circle": result = 'b' else: result = 'n' # 打印检测到的形状、颜色 print(f"Result: {result}") #cv2.imshow("enhanced_image", enhanced_image) #cv2.imshow("edges", edges) #cv2.imshow("Image", image) #cv2.waitKey(0) #cv2.destroyAllWindows() if __name__ == "__main__": detect_shape_and_color() ``` 请注意,上述代码中使用了Cython的类型注释来声明变量类型,以提高性能。还添加了Cython所需的C函数声明和转换函数。 在使用Cython之前,确保已按照之前提到的步骤安装了Cython并正确配置了环境。然后,将上述代码保存到一个.pyx文件中,并创建一个适当的setup.py文件来构建和编译Cython代码。 希望这个示例能够帮助你了解如何使用Cython将Python代码转换为C代码。如果有任何问题,请随时提问!
阅读全文

相关推荐

大家在看

recommend-type

水利 SWMM PEST++ 自动率定

内容概要:使用PEST++自动率定SWMM模型的参数,实现参数的自动优选 适用人群:水利工作者 使用场景及目标:自动率定SWMM模型的参数 其他说明:也可以自动率定其他模型的参数
recommend-type

批量标准矢量shp互转txt工具

1.解压运行exe即可。(适用于windows7、windows10等操作系统) 2.标准矢量shp,转换为标准txt格式 4.此工具专门针对自然资源系统:建设用地报批、设施农用地上图、卫片等系统。
recommend-type

测量变频损耗L的方框图如图-所示。-微波电路实验讲义

测量变频损耗L的方框图如图1-1所示。 图1-1 实验线路 实验线路连接 本振源 信号源 功率计 定向耦合器 超高频毫伏表 滤波器 50Ω 混频器 毫安表
recommend-type

安装向导-pro/engineer野火版5.0完全自学一本通

1.3 安装向导 在第一次使用密码机,可以使用管理程序的安装向导功能,逐步完成对密码机 的基本配置。如果需要使用其他配置功能,可参考本章节其他管理操作说明。 安装向导提供以下主要配置功能: a) 初始化密码机:清空所有密钥及管理信息。 b) 管理员初始化:为保证设备的安全性、可靠性,及正常使用所有功能,建议 设置 3 个管理员(标准配置)。 c) 操作员初始化:用于启动密码服务。 d) RSA 密钥管理:产生 RSA 签名密钥对或加密密钥对并保存在密码设备内部。
recommend-type

中南大学943数据结构1997-2020真题&解析

中南大学943数据结构1997-2020真题&解析

最新推荐

recommend-type

Python实现Canny及Hough算法代码实例解析

在本文中,我们将深入探讨如何使用Python实现Canny边缘检测和Hough变换算法。这两个算法在计算机视觉领域中被广泛用于图像处理,特别是在物体检测、边缘检测和形状识别上。 首先,Canny边缘检测是一种经典的多级...
recommend-type

python+opencv边缘提取与各函数参数解析

接着,应用Canny边缘检测算法,`cv2.Canny()`函数有两个阈值参数,`50`和`150`。低阈值用于连接边缘,高阈值用于分离前景与背景,这样可以避免虚假边缘的出现,得到更清晰的边缘结果。 最后,通过与运算`cv2....
recommend-type

C语言实现opencv提取直线、轮廓及ROI实例详解

直线检测是计算机视觉中一个重要的任务,用于检测图像中的直线。OpenCV提供了Hough变换算法来检测直线。Hough变换是一种穷举的算法,通过遍历所有可能的直线来检测图像中的直线。 在OpenCV中,我们可以使用...
recommend-type

山东大学计算机学院人工智能实验班(2017级)计算机视觉期末考试题.pdf

考试可能会涵盖灰度化、直方图均衡化、滤波器(如高斯滤波、拉普拉斯滤波)的应用,以及边缘检测算法(如Canny边缘检测、Sobel边缘检测)等基础知识。 二、特征检测与描述 特征检测和描述是识别图像中关键点和区域...
recommend-type

OpenCV.js中文教程

- **Canny 边缘检测**:一种经典的边缘检测算法,用于找出图像中的边界。 - **轮廓**:检测图像中的对象边界,可以获取轮廓的属性,进行形状分析和对象识别。 5. **图像分析与变换** - **直方图**:分析图像的...
recommend-type

WildFly 8.x中Apache Camel结合REST和Swagger的演示

资源摘要信息:"CamelEE7RestSwagger:Camel on EE 7 with REST and Swagger Demo" 在深入分析这个资源之前,我们需要先了解几个关键的技术组件,它们是Apache Camel、WildFly、Java DSL、REST服务和Swagger。下面是这些知识点的详细解析: 1. Apache Camel框架: Apache Camel是一个开源的集成框架,它允许开发者采用企业集成模式(Enterprise Integration Patterns,EIP)来实现不同的系统、应用程序和语言之间的无缝集成。Camel基于路由和转换机制,提供了各种组件以支持不同类型的传输和协议,包括HTTP、JMS、TCP/IP等。 2. WildFly应用服务器: WildFly(以前称为JBoss AS)是一款开源的Java应用服务器,由Red Hat开发。它支持最新的Java EE(企业版Java)规范,是Java企业应用开发中的关键组件之一。WildFly提供了一个全面的Java EE平台,用于部署和管理企业级应用程序。 3. Java DSL(领域特定语言): Java DSL是一种专门针对特定领域设计的语言,它是用Java编写的小型语言,可以在Camel中用来定义路由规则。DSL可以提供更简单、更直观的语法来表达复杂的集成逻辑,它使开发者能够以一种更接近业务逻辑的方式来编写集成代码。 4. REST服务: REST(Representational State Transfer)是一种软件架构风格,用于网络上客户端和服务器之间的通信。在RESTful架构中,网络上的每个资源都被唯一标识,并且可以使用标准的HTTP方法(如GET、POST、PUT、DELETE等)进行操作。RESTful服务因其轻量级、易于理解和使用的特性,已经成为Web服务设计的主流风格。 5. Swagger: Swagger是一个开源的框架,它提供了一种标准的方式来设计、构建、记录和使用RESTful Web服务。Swagger允许开发者描述API的结构,这样就可以自动生成文档、客户端库和服务器存根。通过Swagger,可以清晰地了解API提供的功能和如何使用这些API,从而提高API的可用性和开发效率。 结合以上知识点,CamelEE7RestSwagger这个资源演示了如何在WildFly应用服务器上使用Apache Camel创建RESTful服务,并通过Swagger来记录和展示API信息。整个过程涉及以下几个技术步骤: - 首先,需要在WildFly上设置和配置Camel环境,确保Camel能够运行并且可以作为路由引擎来使用。 - 其次,通过Java DSL编写Camel路由,定义如何处理来自客户端的HTTP请求,并根据请求的不同执行相应的业务逻辑。 - 接下来,使用Swagger来记录和描述创建的REST API。这包括定义API的路径、支持的操作、请求参数和响应格式等。 - 最后,通过Swagger提供的工具生成API文档和客户端代码,以及服务器端的存根代码,从而使得开发者可以更加便捷地理解和使用这些RESTful服务。 这个资源的实践演示对于想要学习如何在Java EE平台上使用Camel集成框架,并且希望提供和记录REST服务的开发者来说是非常有价值的。通过这种方式,开发者可以更加快速和简单地创建和管理Web服务,同时也增强了API的可访问性和可维护性。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【声子晶体模拟全能指南】:20年经验技术大佬带你从入门到精通

![【声子晶体模拟全能指南】:20年经验技术大佬带你从入门到精通](https://docs.lammps.org/_images/lammps-gui-main.png) # 摘要 声子晶体作为一种具有周期性结构的材料,在声学隐身、微波和红外领域具有广泛的应用潜力。本文从基础理论出发,深入探讨了声子晶体的概念、物理模型和声子带结构的理论解析,同时介绍了声子晶体的数值模拟方法,包括有限元方法(FEM)、离散元方法(DEM)和分子动力学(MD)。本文还提供了一套完整的声子晶体模拟实践指南,涵盖了模拟前的准备工作、详细的模拟步骤以及结果验证和案例分析。此外,文章探讨了声子晶体模拟的高级技巧和拓展
recommend-type

2024-07-27怎么用python转换成农历日期

在Python中,可以使用`lunarcalendar`库来将公历日期转换为农历日期。首先,你需要安装这个库,可以通过pip命令进行安装: ```bash pip install lunarcalendar ``` 安装完成后,你可以使用以下代码将公历日期转换为农历日期: ```python from lunarcalendar import Converter, Solar, Lunar, DateNotExist # 创建一个公历日期对象 solar_date = Solar(2024, 7, 27) # 将公历日期转换为农历日期 try: lunar_date = Co
recommend-type

FDFS客户端Python库1.2.6版本发布

资源摘要信息:"FastDFS是一个开源的轻量级分布式文件系统,它对文件进行管理,功能包括文件存储、文件同步、文件访问等,适用于大规模文件存储和高并发访问场景。FastDFS为互联网应用量身定制,充分考虑了冗余备份、负载均衡、线性扩容等机制,保证系统的高可用性和扩展性。 FastDFS 架构包含两个主要的角色:Tracker Server 和 Storage Server。Tracker Server 作用是负载均衡和调度,它接受客户端的请求,为客户端提供文件访问的路径。Storage Server 作用是文件存储,一个 Storage Server 中可以有多个存储路径,文件可以存储在不同的路径上。FastDFS 通过 Tracker Server 和 Storage Server 的配合,可以完成文件上传、下载、删除等操作。 Python 客户端库 fdfs-client-py 是为了解决 FastDFS 文件系统在 Python 环境下的使用。fdfs-client-py 使用了 Thrift 协议,提供了文件上传、下载、删除、查询等接口,使得开发者可以更容易地利用 FastDFS 文件系统进行开发。fdfs-client-py 通常作为 Python 应用程序的一个依赖包进行安装。 针对提供的压缩包文件名 fdfs-client-py-master,这很可能是一个开源项目库的名称。根据文件名和标签“fdfs”,我们可以推测该压缩包包含的是 FastDFS 的 Python 客户端库的源代码文件。这些文件可以用于构建、修改以及扩展 fdfs-client-py 功能以满足特定需求。 由于“标题”和“描述”均与“fdfs-client-py-master1.2.6.zip”有关,没有提供其它具体的信息,因此无法从标题和描述中提取更多的知识点。而压缩包文件名称列表中只有一个文件“fdfs-client-py-master”,这表明我们目前讨论的资源摘要信息是基于对 FastDFS 的 Python 客户端库的一般性了解,而非基于具体文件内容的分析。 根据标签“fdfs”,我们可以深入探讨 FastDFS 相关的概念和技术细节,例如: - FastDFS 的分布式架构设计 - 文件上传下载机制 - 文件同步机制 - 元数据管理 - Tracker Server 的工作原理 - Storage Server 的工作原理 - 容错和数据恢复机制 - 系统的扩展性和弹性伸缩 在实际使用中,开发者可以通过 fdfs-client-py 库来与 FastDFS 文件系统进行交互,利用其提供的 API 接口实现文件的存储、管理等功能,从而开发出高效、可靠的文件处理应用。开发者可以根据项目的实际需求,选择合适的 FastDFS 版本,并根据官方文档进行安装、配置及优化,确保系统稳定运行。 总的来说,fdfs-client-py 是 FastDFS 文件系统与 Python 应用之间的一座桥梁,它使得开发者能够更加方便地将 FastDFS 集成到基于 Python 开发的应用中,发挥出 FastDFS 在文件管理方面的优势。"