基于深度学习的图像修复代码
时间: 2024-09-22 16:04:06 浏览: 61
基于深度学习的图像修复通常涉及到使用神经网络模型来恢复损坏、缺失或低分辨率的图像。这类任务常用于去噪、图像增强、老照片修复等场景。常见的深度学习模型有Pix2Pix、CycleGAN、U-Net等。以下是简单介绍一种基于深度学习的图像修复代码示例,以U-Net为例:
```python
# 导入必要的库
import tensorflow as tf
from tensorflow.keras.layers import Input, Conv2D, UpSampling2D, Concatenate
# 定义U-Net结构
def unet_model(input_shape):
inputs = Input(shape=input_shape)
# 编码部分
conv1 = Conv2D(64, (3, 3), activation='relu', padding='same')(inputs)
conv1 = Conv2D(64, (3, 3), activation='relu', padding='same')(conv1)
pool1 = MaxPooling2D((2, 2))(conv1)
conv2 = Conv2D(128, (3, 3), activation='relu', padding='same')(pool1)
conv2 = Conv2D(128, (3, 3), activation='relu', padding='same')(conv2)
pool2 = MaxPooling2D((2, 2))(conv2)
# ...继续添加更多的卷积层和池化层
# 底部编码层
conv_encoder = conv5 = Conv2D(512, (3, 3), activation='relu', padding='same')(pool4)
conv_encoder = Conv2D(512, (3, 3), activation='relu', padding='same')(conv_encoder)
# 解码部分
up6 = Conv2DTranspose(256, (2, 2), strides=(2, 2), padding='same')(conv_encoder)
merge6 = Concatenate()([up6, conv5])
conv6 = Conv2D(256, (3, 3), activation='relu', padding='same')(merge6)
conv6 = Conv2D(256, (3, 3), activation='relu', padding='same')(conv6)
# 同样的步骤,逐步上采样并合并特征图,直到达到原始图像尺寸
# 输出层
output = Conv2D(1, (1, 1), activation='sigmoid')(conv6) # 对于二值修复任务,可能需要Sigmoid激活
return tf.keras.Model(inputs=inputs, outputs=output)
```
阅读全文