请给出使用Faster R-CNN获取图像中交通标志的位置,并使用ResNet提取交通标志区域特征,再通过一个卷积神经网络实现对交通标志分类的详细代码
时间: 2024-02-11 20:07:50 浏览: 82
好的,以下是使用Faster R-CNN获取图像中交通标志位置的代码:
```python
# 导入必要的库
import torch
import torchvision
import cv2
import numpy as np
import matplotlib.pyplot as plt
# 加载训练好的 Faster R-CNN 模型
model = torchvision.models.detection.fasterrcnn_resnet50_fpn(pretrained=True)
# 设置为评估模式
model.eval()
# 定义标签和颜色
labels = [
'speed limit 20',
'speed limit 30',
'speed limit 50',
'speed limit 60',
'speed limit 70',
'speed limit 80',
'end of speed limit 80',
'speed limit 100',
'speed limit 120',
'no passing',
'no passing for vehicles over 3.5 metric tons',
'right-of-way at the next intersection',
'priority road',
'yield',
'stop',
'no vehicles',
'vehicles over 3.5 metric tons prohibited',
'no entry',
'general caution',
'dangerous curve to the left',
'dangerous curve to the right',
'double curve',
'bumpy road',
'slippery road',
'road narrows on the right',
'road work',
'traffic signals',
'pedestrians',
'children crossing',
'bicycles crossing',
'beware of ice/snow',
'wild animals crossing',
'end of all speed and passing limits',
'turn right ahead',
'turn left ahead',
'ahead only',
'go straight or right',
'go straight or left',
'keep right',
'keep left',
'roundabout mandatory',
'end of no passing',
'end of no passing by vehicles over 3.5 metric tons'
]
colors = np.random.uniform(0, 255, size=(len(labels), 3))
# 加载测试图像
image = cv2.imread('test.jpg')
# 转换为 PyTorch 张量
image = torch.from_numpy(image / 255.0).float().permute(2, 0, 1)
# 将图像放入模型中进行预测
with torch.no_grad():
predictions = model([image])
# 获取预测结果
boxes = predictions[0]['boxes']
scores = predictions[0]['scores']
labels = predictions[0]['labels']
# 设置阈值,过滤掉低置信度的预测结果
threshold = 0.5
boxes = boxes[scores >= threshold]
labels = labels[scores >= threshold]
# 将预测结果绘制在图像上
image = cv2.imread('test.jpg')
for box, label in zip(boxes, labels):
x1, y1, x2, y2 = box.cpu().numpy().astype(np.int32)
color = colors[label]
cv2.rectangle(image, (x1, y1), (x2, y2), color, 2)
cv2.putText(image, labels[label], (x1, y1 - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.9, color, 2)
# 显示图像
plt.imshow(cv2.cvtColor(image, cv2.COLOR_BGR2RGB))
plt.show()
```
接下来是使用 ResNet 提取交通标志区域特征和使用卷积神经网络实现交通标志分类的代码:
```python
# 导入必要的库
import torch
import torchvision
import cv2
import numpy as np
import matplotlib.pyplot as plt
# 加载训练好的 Faster R-CNN 模型
model = torchvision.models.detection.fasterrcnn_resnet50_fpn(pretrained=True)
# 设置为评估模式
model.eval()
# 加载训练好的交通标志分类模型
classifier = torchvision.models.resnet18(pretrained=True)
classifier.fc = torch.nn.Linear(classifier.fc.in_features, 43)
classifier.load_state_dict(torch.load('classifier.pth'))
classifier.eval()
# 定义标签和颜色
labels = [
'speed limit 20',
'speed limit 30',
'speed limit 50',
'speed limit 60',
'speed limit 70',
'speed limit 80',
'end of speed limit 80',
'speed limit 100',
'speed limit 120',
'no passing',
'no passing for vehicles over 3.5 metric tons',
'right-of-way at the next intersection',
'priority road',
'yield',
'stop',
'no vehicles',
'vehicles over 3.5 metric tons prohibited',
'no entry',
'general caution',
'dangerous curve to the left',
'dangerous curve to the right',
'double curve',
'bumpy road',
'slippery road',
'road narrows on the right',
'road work',
'traffic signals',
'pedestrians',
'children crossing',
'bicycles crossing',
'beware of ice/snow',
'wild animals crossing',
'end of all speed and passing limits',
'turn right ahead',
'turn left ahead',
'ahead only',
'go straight or right',
'go straight or left',
'keep right',
'keep left',
'roundabout mandatory',
'end of no passing',
'end of no passing by vehicles over 3.5 metric tons'
]
colors = np.random.uniform(0, 255, size=(len(labels), 3))
# 加载测试图像
image = cv2.imread('test.jpg')
# 转换为 PyTorch 张量
image = torch.from_numpy(image / 255.0).float().permute(2, 0, 1)
# 将图像放入模型中进行预测
with torch.no_grad():
predictions = model([image])
# 获取预测结果
boxes = predictions[0]['boxes']
scores = predictions[0]['scores']
labels = predictions[0]['labels']
# 设置阈值,过滤掉低置信度的预测结果
threshold = 0.5
boxes = boxes[scores >= threshold]
labels = labels[scores >= threshold]
# 遍历每个交通标志区域,提取特征并进行分类
image = cv2.imread('test.jpg')
for box in boxes:
x1, y1, x2, y2 = box.cpu().numpy().astype(np.int32)
roi = image[y1:y2, x1:x2]
roi = cv2.resize(roi, (32, 32))
roi = torch.from_numpy(roi / 255.0).float().permute(2, 0, 1)
with torch.no_grad():
features = classifier(roi.unsqueeze(0))
probs = torch.softmax(features, dim=1)[0]
label = torch.argmax(probs)
color = colors[label]
cv2.rectangle(image, (x1, y1), (x2, y2), color, 2)
cv2.putText(image, labels[label], (x1, y1 - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.9, color, 2)
# 显示图像
plt.imshow(cv2.cvtColor(image, cv2.COLOR_BGR2RGB))
plt.show()
```
注意,上述代码中的 `classifier.pth` 是训练好的交通标志分类模型的权重文件。
阅读全文