lr_scheduler_func = get_lr_scheduler(lr_decay_type, Init_lr_fit, Min_lr_fit, UnFreeze_Epoch) model.Unfreeze_backbone() epoch_step = num_train // batch_size epoch_step_val = num_val // batch_size if epoch_step == 0 or epoch_step_val == 0: raise ValueError("数据集过小,无法继续进行训练,请扩充数据集。") if distributed: batch_size = batch_size // ngpus_per_node gen = DataLoader(train_dataset, shuffle=shuffle, batch_size=batch_size, num_workers=num_workers, pin_memory=True, drop_last=True, collate_fn=detection_collate, sampler=train_sampler) gen_val = DataLoader(val_dataset, shuffle=shuffle, batch_size=batch_size, num_workers=num_workers, pin_memory=True, drop_last=True, collate_fn=detection_collate, sampler=val_sampler) UnFreeze_flag = True if distributed: train_sampler.set_epoch(epoch) set_optimizer_lr(optimizer, lr_scheduler_func, epoch) fit_one_epoch(model_train, model, loss_history, optimizer, epoch, epoch_step, epoch_step_val, gen, gen_val, UnFreeze_Epoch, Cuda, fp16, scaler, save_period, save_dir, local_rank) if local_rank == 0: loss_history.writer.close() 转为伪代码
时间: 2024-04-28 10:24:09 浏览: 199
proj.zip_algorithms_scheduler_task scheduler
lr_scheduler_func = get_lr_scheduler(lr_decay_type, Init_lr_fit, Min_lr_fit, UnFreeze_Epoch)
model.Unfreeze_backbone()
epoch_step = num_train // batch_size
epoch_step_val = num_val // batch_size
if epoch_step == 0 or epoch_step_val == 0:
raise ValueError("数据集过小,无法继续进行训练,请扩充数据集。")
if distributed:
batch_size = batch_size // ngpus_per_node
gen = DataLoader(train_dataset, shuffle=shuffle, batch_size=batch_size, num_workers=num_workers, pin_memory=True, drop_last=True, collate_fn=detection_collate, sampler=train_sampler)
gen_val = DataLoader(val_dataset, shuffle=shuffle, batch_size=batch_size, num_workers=num_workers, pin_memory=True, drop_last=True, collate_fn=detection_collate, sampler=val_sampler)
UnFreeze_flag = True
if distributed:
train_sampler.set_epoch(epoch)
set_optimizer_lr(optimizer, lr_scheduler_func, epoch)
fit_one_epoch(model_train, model, loss_history, optimizer, epoch, epoch_step, epoch_step_val, gen, gen_val, UnFreeze_Epoch, Cuda, fp16, scaler, save_period, save_dir, local_rank)
if local_rank == 0:
loss_history.writer.close()
伪代码并不是一种具体的编程语言,而是一种算法描述语言,因此将上述代码转换为伪代码就是将其转换为类似于自然语言的算法描述。在这个过程中,可以将代码中的特定语法和语言结构替换为通用的算法表达方式,以便更清晰地表达算法的逻辑和流程。
阅读全文