means = np.random.rand(num_clusters, data.shape[1])这里的data.shape[1]什么意思

时间: 2023-12-24 13:05:40 浏览: 36
在这个代码段中,`data`是一个矩阵,其中每一行是一个数据点,每列是该数据点的一个特征。例如,如果我们有100个数据点,每个数据点有3个特征,那么`data`的形状将是`(100, 3)`。因此,`data.shape[1]`表示`data`矩阵中每个数据点的特征数量。`num_clusters`是聚类算法中的聚类数量,因此`means`是一个形状为`(num_clusters, data.shape[1])`的随机矩阵,其中每行表示一个聚类的中心点,每列表示该聚类中心点的不同特征的值。
相关问题

def fuzzy_kmeans(data, num_clusters, m, max_iter=100, epsilon=1e-4): num_samples = data.shape[0] num_features = data.shape[1] # 初始化隶属度矩阵 membership = np.random.dirichlet(np.ones(num_clusters), size=num_samples) # 迭代更新聚类中心和隶属度 for iter in range(max_iter): # 计算聚类中心 centers = np.zeros((num_clusters, num_features)) for k in range(num_clusters): centers[k] = np.sum((membership[:, k]**m).reshape(-1, 1) * data, axis=0) / np.sum(membership[:, k]**m) # 计算隶属度 new_membership = np.zeros((num_samples, num_clusters)) for i in range(num_samples): for k in range(num_clusters): numerator = np.linalg.norm(data[i] - centers[k]) denominator = np.sum([(np.linalg.norm(data[i] - centers[j]) / numerator)**(2 / (m - 1)) for j in range(num_clusters)]) new_membership[i, k] = 1 / denominator # 判断迭代终止条件 if np.sum(np.abs(new_membership - membership)) < epsilon: break membership = new_membership return centers, membership

这是一个模糊k-means聚类算法的Python实现。该算法使用隶属度矩阵来描述每个数据点属于每个聚类中心的隶属度程度。具体步骤如下: 1. 初始化隶属度矩阵,使用Dirichlet分布生成每个数据点属于每个聚类中心的隶属度。 2. 迭代更新聚类中心和隶属度,直到达到迭代终止条件。在每次迭代中,计算聚类中心和每个数据点属于每个聚类中心的隶属度。 3. 计算聚类中心,对于每个聚类中心,计算其对应的数据点在隶属度矩阵上的加权平均值。 4. 计算隶属度,对于每个数据点和每个聚类中心,计算其隶属度,使用公式:$u_{ik} = \frac{1}{\sum_{j=1}^c(\frac{d_{ik}}{d_{ij}})^{\frac{2}{m-1}}}$,其中 $d_{ik}$ 表示数据点 $i$ 与聚类中心 $k$ 的距离,$d_{ij}$ 表示数据点 $i$ 与聚类中心 $j$ 的距离。 5. 判断迭代终止条件,如果当前隶属度矩阵与上一次迭代的隶属度矩阵的差异小于给定的阈值,则停止迭代。 6. 返回计算得到的聚类中心和隶属度矩阵。

from sklearn.decomposition import PCA from sklearn.cluster import KMeans from sklearn.metrics import accuracy_score import numpy as np import matplotlib.pyplot as plt from tensorflow.examples.tutorials.mnist import input_data import datetime # 导入数据集 start = datetime.datetime.now() #计算程序运行时间 mnist = input_data.read_data_sets("MNIST_data/", one_hot=True) X_train = mnist.train.images y_train = mnist.train.labels X_test = mnist.test.images y_test = mnist.test.labels #PCA降维 pca = PCA(n_components=10) X_train_pca = pca.fit_transform(X_train) X_test_pca = pca.fit_transform(X_test) # 可视化 plt.scatter(X_train_pca[:, 0], X_train_pca[:, 1], c=np.argmax(y_train, axis=1)) plt.show() # K-means聚类 kmeans_centers = [] # 用于存储初始类中心 for i in range(10): idx = np.where(np.argmax(y_train, axis=1) == i)[0] # 获取第i类数字的索引列表 sample_idx = np.random.choice(idx) # 随机指定一个样本作为初始类中心 kmeans_centers.append(X_train_pca[sample_idx]) # 将初始类中心添加到列表中 kmeans = KMeans(n_clusters=10,init=kmeans_centers,n_init=1) kmeans.fit(X_train_pca) # 计算分类错误率 y_pred = kmeans.predict(X_test_pca) acc = accuracy_score(np.argmax(y_test, axis=1), y_pred) print("分类错误率:{:.2%}".format(1-acc)) # 计算程序运行时间 end = datetime.datetime.now() print("程序运行时间为:"+str((end-start).seconds)+"秒")优化这段代码,输出其中pca降维的因子负荷量

可以优化代码如下: ``` from sklearn.decomposition import PCA from sklearn.cluster import KMeans from sklearn.metrics import accuracy_score import numpy as np import matplotlib.pyplot as plt from tensorflow.examples.tutorials.mnist import input_data import datetime # 导入数据集 start = datetime.datetime.now() #计算程序运行时间 mnist = input_data.read_data_sets("MNIST_data/", one_hot=True) X_train = mnist.train.images y_train = mnist.train.labels X_test = mnist.test.images y_test = mnist.test.labels # PCA降维 pca = PCA(n_components=10) X_train_pca = pca.fit_transform(X_train) X_test_pca = pca.transform(X_test) # 输出因子负荷量 print("PCA降维后的因子负荷量为:") print(pca.components_) # 可视化 plt.scatter(X_train_pca[:, 0], X_train_pca[:, 1], c=np.argmax(y_train, axis=1)) plt.show() # K-means聚类 kmeans_centers = [] # 用于存储初始类中心 for i in range(10): idx = np.where(np.argmax(y_train, axis=1) == i)[0] # 获取第i类数字的索引列表 sample_idx = np.random.choice(idx) # 随机指定一个样本作为初始类中心 kmeans_centers.append(X_train_pca[sample_idx]) # 将初始类中心添加到列表中 kmeans = KMeans(n_clusters=10,init=kmeans_centers,n_init=1) kmeans.fit(X_train_pca) # 计算分类错误率 y_pred = kmeans.predict(X_test_pca) acc = accuracy_score(np.argmax(y_test, axis=1), y_pred) print("分类错误率:{:.2%}".format(1-acc)) # 计算程序运行时间 end = datetime.datetime.now() print("程序运行时间为:"+str((end-start).seconds)+"秒") ``` 输出结果中包含了PCA降维后的因子负荷量,即`pca.components_`。

相关推荐

import os import numpy as np import matplotlib.pyplot as plt from PIL import Image from colorcet.plotting import arr from sklearn.cluster import SpectralClustering from sklearn.decomposition import PCA from tensorflow.keras.preprocessing import image from tensorflow.keras.applications.resnet50 import ResNet50 from tensorflow.keras.applications.resnet50 import preprocess_input # 定义加载图片函数 def load_image(img_path): img = image.load_img(img_path, target_size=(224, 224)) x = image.img_to_array(img) x = np.expand_dims(x, axis=0) x = preprocess_input(x) return x # 加载ResNet50模型 model = ResNet50(weights='imagenet', include_top=False, pooling='avg') # 加载图片并提取特征向量 img_dir = 'D:/wjd' img_names = os.listdir(img_dir) X = [] for img_name in img_names: img_path = os.path.join(img_dir, img_name) img = load_image(img_path) features = model.predict(img)[0] X.append(features) # 将特征向量转化为矩阵 X = np.array(X) # 将复数类型的数据转换为实数类型 X = np.absolute(X) # 计算相似度矩阵 S = np.dot(X, X.T) # 归一化相似度矩阵 D = np.diag(np.sum(S, axis=1)) L = D - S L_norm = np.dot(np.dot(np.sqrt(np.linalg.inv(D)), L), np.sqrt(np.linalg.inv(D))) # 计算特征向量 eigvals, eigvecs = np.linalg.eig(L_norm) idx = eigvals.argsort()[::-1] eigvals = eigvals[idx] eigvecs = eigvecs[:, idx] Y = eigvecs[:, :2] # 使用谱聚类进行分类 n_clusters = 5 clustering = SpectralClustering(n_clusters=n_clusters, assign_labels="discretize", random_state=0).fit(Y) # 可视化聚类结果 pca = PCA(n_components=2) X_pca = pca.fit_transform(X) plt.scatter(X_pca[:, 0], X_pca[:, 1], c=clustering.labels_, cmap='rainbow') plt.show(),反复会出现numpy.ComplexWarning: Casting complex values to real discards the imaginary part The above exception was the direct cause of the following exception,这个问题

import time import numpy as np import matplotlib.pyplot as plt from sklearn.cluster import MiniBatchKMeans, KMeans from sklearn.metrics.pairwise import pairwise_distances_argmin from sklearn.datasets import make_blobs # Generate sample data np.random.seed(0) batch_size = 45 centers = [[1, 1], [-1, -1], [1, -1]] n_clusters = len(centers) X, labels_true = make_blobs(n_samples=3000, centers=centers, cluster_std=0.7) # Compute clustering with Means k_means = KMeans(init='k-means++', n_clusters=3, n_init=10) t0 = time.time() k_means.fit(X) t_batch = time.time() - t0 # Compute clustering with MiniBatchKMeans mbk = MiniBatchKMeans(init='k-means++', n_clusters=3, batch_size=batch_size, n_init=10, max_no_improvement=10, verbose=0) t0 = time.time() mbk.fit(X) t_mini_batch = time.time() - t0 # Plot result fig = plt.figure(figsize=(8, 3)) fig.subplots_adjust(left=0.02, right=0.98, bottom=0.05, top=0.9) colors = ['#4EACC5', '#FF9C34', '#4E9A06'] # We want to have the same colors for the same cluster from the # MiniBatchKMeans and the KMeans algorithm. Let's pair the cluster centers per # closest one. k_means_cluster_centers = k_means.cluster_centers_ order = pairwise_distances_argmin(k_means.cluster_centers_, mbk.cluster_centers_) mbk_means_cluster_centers = mbk.cluster_centers_[order] k_means_labels = pairwise_distances_argmin(X, k_means_cluster_centers) mbk_means_labels = pairwise_distances_argmin(X, mbk_means_cluster_centers) # KMeans for k, col in zip(range(n_clusters), colors): my_members = k_means_labels == k cluster_center = k_means_cluster_centers[k] plt.plot(X[my_members, 0], X[my_members, 1], 'w', markerfacecolor=col, marker='.') plt.plot(cluster_center[0], cluster_center[1], 'o', markerfacecolor=col, markeredgecolor='k', markersize=6) plt.title('KMeans') plt.xticks(()) plt.yticks(()) plt.show() 这段代码每一句在干什么

import os import numpy as np import matplotlib.pyplot as plt from PIL import Image from colorcet.plotting import arr from sklearn.cluster import SpectralClustering from sklearn.decomposition import PCA from tensorflow.keras.preprocessing import image from tensorflow.keras.applications.resnet50 import ResNet50 from tensorflow.keras.applications.resnet50 import preprocess_input # 定义加载图片函数 def load_image(img_path): img = image.load_img(img_path, target_size=(224, 224)) x = image.img_to_array(img) x = np.expand_dims(x, axis=0) x = preprocess_input(x) return x # 加载ResNet50模型 model = ResNet50(weights='imagenet', include_top=False, pooling='avg') # 加载图片并提取特征向量 img_dir = 'D:/wjd' img_names = os.listdir(img_dir) X = [] for img_name in img_names: img_path = os.path.join(img_dir, img_name) img = load_image(img_path) features = model.predict(img)[0] X.append(features) # 将特征向量转化为矩阵 X = np.array(X) X = np.real(X) arr_real = arr.astype('float') # 计算相似度矩阵 S = np.dot(X, X.T) # 归一化相似度矩阵 D = np.diag(np.sum(S, axis=1)) L = D - S L_norm = np.dot(np.dot(np.sqrt(np.linalg.inv(D)), L), np.sqrt(np.linalg.inv(D))) # 计算特征向量 eigvals, eigvecs = np.linalg.eig(L_norm) idx = eigvals.argsort()[::-1] eigvals = eigvals[idx] eigvecs = eigvecs[:, idx] Y = eigvecs[:, :2] # 使用谱聚类进行分类 n_clusters = 5 clustering = SpectralClustering(n_clusters=n_clusters, assign_labels="discretize", random_state=0).fit(Y) # 可视化聚类结果 pca = PCA(n_components=2) X_pca = pca.fit_transform(X) plt.scatter(X_pca[:, 0], X_pca[:, 1], c=clustering.labels_, cmap='rainbow') plt.show(),这行代码出现了这个numpy.ComplexWarning: Casting complex values to real discards the imaginary part The above exception was the direct cause of the following exception问题

最新推荐

recommend-type

pre_o_1csdn63m9a1bs0e1rr51niuu33e.a

pre_o_1csdn63m9a1bs0e1rr51niuu33e.a
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

实现实时数据湖架构:Kafka与Hive集成

![实现实时数据湖架构:Kafka与Hive集成](https://img-blog.csdnimg.cn/img_convert/10eb2e6972b3b6086286fc64c0b3ee41.jpeg) # 1. 实时数据湖架构概述** 实时数据湖是一种现代数据管理架构,它允许企业以低延迟的方式收集、存储和处理大量数据。与传统数据仓库不同,实时数据湖不依赖于预先定义的模式,而是采用灵活的架构,可以处理各种数据类型和格式。这种架构为企业提供了以下优势: - **实时洞察:**实时数据湖允许企业访问最新的数据,从而做出更明智的决策。 - **数据民主化:**实时数据湖使各种利益相关者都可
recommend-type

SPDK_NVMF_DISCOVERY_NQN是什么 有什么作用

SPDK_NVMF_DISCOVERY_NQN 是 SPDK (Storage Performance Development Kit) 中用于查询 NVMf (Non-Volatile Memory express over Fabrics) 存储设备名称的协议。NVMf 是一种基于网络的存储协议,可用于连接远程非易失性内存存储器。 SPDK_NVMF_DISCOVERY_NQN 的作用是让存储应用程序能够通过 SPDK 查询 NVMf 存储设备的名称,以便能够访问这些存储设备。通过查询 NVMf 存储设备名称,存储应用程序可以获取必要的信息,例如存储设备的IP地址、端口号、名称等,以便能
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

实现实时监控告警系统:Kafka与Grafana整合

![实现实时监控告警系统:Kafka与Grafana整合](https://imgconvert.csdnimg.cn/aHR0cHM6Ly9tbWJpei5xcGljLmNuL21tYml6X2pwZy9BVldpY3ladXVDbEZpY1pLWmw2bUVaWXFUcEdLT1VDdkxRSmQxZXB5R1lxaWNlUjA2c0hFek5Qc3FyRktudFF1VDMxQVl3QTRXV2lhSWFRMEFRc0I1cW1ZOGcvNjQw?x-oss-process=image/format,png) # 1.1 Kafka集群架构 Kafka集群由多个称为代理的服务器组成,这
recommend-type

Windows 运行Python脚本

要在 Windows 上运行 Python 脚本,你需要先安装 Python。可以从官网下载 Python 安装包并按照提示进行安装。安装完成后,就可以在命令行中输入 `python` 命令,进入 Python 解释器环境。 接着,你可以编写 Python 脚本,保存为 `.py` 后缀的文件。在命令行中进入脚本所在的目录,输入 `python script.py` 命令来运行脚本。其中 `script.py` 是你的脚本文件名。 如果你想在 Windows 上运行一个 Python 程序,但不想打开命令行窗口,可以将脚本文件拖动到 Python 可执行文件 `python.exe` 上,
recommend-type

c++校园超市商品信息管理系统课程设计说明书(含源代码) (2).pdf

校园超市商品信息管理系统课程设计旨在帮助学生深入理解程序设计的基础知识,同时锻炼他们的实际操作能力。通过设计和实现一个校园超市商品信息管理系统,学生掌握了如何利用计算机科学与技术知识解决实际问题的能力。在课程设计过程中,学生需要对超市商品和销售员的关系进行有效管理,使系统功能更全面、实用,从而提高用户体验和便利性。 学生在课程设计过程中展现了积极的学习态度和纪律,没有缺勤情况,演示过程流畅且作品具有很强的使用价值。设计报告完整详细,展现了对问题的深入思考和解决能力。在答辩环节中,学生能够自信地回答问题,展示出扎实的专业知识和逻辑思维能力。教师对学生的表现予以肯定,认为学生在课程设计中表现出色,值得称赞。 整个课程设计过程包括平时成绩、报告成绩和演示与答辩成绩三个部分,其中平时表现占比20%,报告成绩占比40%,演示与答辩成绩占比40%。通过这三个部分的综合评定,最终为学生总成绩提供参考。总评分以百分制计算,全面评估学生在课程设计中的各项表现,最终为学生提供综合评价和反馈意见。 通过校园超市商品信息管理系统课程设计,学生不仅提升了对程序设计基础知识的理解与应用能力,同时也增强了团队协作和沟通能力。这一过程旨在培养学生综合运用技术解决问题的能力,为其未来的专业发展打下坚实基础。学生在进行校园超市商品信息管理系统课程设计过程中,不仅获得了理论知识的提升,同时也锻炼了实践能力和创新思维,为其未来的职业发展奠定了坚实基础。 校园超市商品信息管理系统课程设计的目的在于促进学生对程序设计基础知识的深入理解与掌握,同时培养学生解决实际问题的能力。通过对系统功能和用户需求的全面考量,学生设计了一个实用、高效的校园超市商品信息管理系统,为用户提供了更便捷、更高效的管理和使用体验。 综上所述,校园超市商品信息管理系统课程设计是一项旨在提升学生综合能力和实践技能的重要教学活动。通过此次设计,学生不仅深化了对程序设计基础知识的理解,还培养了解决实际问题的能力和团队合作精神。这一过程将为学生未来的专业发展提供坚实基础,使其在实际工作中能够胜任更多挑战。