已知π的近似值可由下面公式计算得出: π/4 = 1 – 1/3 + 1/5 – 1/7 ...1/(2n-1)。 给定一个精度值σ(0.000001<=σ<=1),求由上述公式计算出的前后两个π的近似值之差的绝对值小于该精度(即|πn – πn-1| <= σ)时的最小迭代步骤n(n>=2)。
时间: 2024-04-10 13:27:17 浏览: 181
094 求π的近似值 C语言源代码文件
5星 · 资源好评率100%
很抱歉,我之前的回答有误。对于这个问题,我们需要使用一个累加的方式来逐步计算π的近似值,并且在满足条件时停止迭代。下面是一个修正后的示例代码:
```python
def calculate_pi(sigma):
pi_approximation = 0
n = 2 # 初始迭代步骤为2
pi_prev = 1 - 1/3 # 前一个π的近似值
while True:
pi = pi_prev + (-1)**(n+1) * (1 / (2*n - 1))
if abs(pi - pi_prev) <= sigma:
break
pi_prev = pi
n += 1
return n
sigma = 0.000001
min_steps = calculate_pi(sigma)
print(f"The minimum number of steps required is: {min_steps}")
```
在修正后的代码中,我们首先初始化迭代步骤为2,并设置前一个π的近似值为1 - 1/3。然后使用while循环逐步计算π的近似值,并检查每一步的差异是否小于给定的精度σ。如果满足条件,则终止循环,并输出满足条件的最小迭代步骤n。
再次向您致以诚挚的歉意,希望这次回答能够帮助您解决问题。
阅读全文