基于python语言的matlab遗传算法旅行商问题
时间: 2023-11-29 19:45:18 浏览: 198
以下是基于Python语言的遗传算法解决旅行商问题的示例代码:
```python
import numpy as np
import matplotlib.pyplot as plt
# 旅行商问题类
class TSP:
def __init__(self, city_num, pop_size, pc, pm, max_gen):
self.city_num = city_num # 城市数量
self.pop_size = pop_size # 种群大小
self.pc = pc # 交叉概率
self.pm = pm # 变异概率
self.max_gen = max_gen # 最大迭代次数
self.city_pos = np.random.rand(city_num, 2) # 城市坐标
self.dist_mat = self.get_dist_mat() # 距离矩阵
self.pop = np.zeros((pop_size, city_num), dtype=int) # 种群
self.fitness = np.zeros(pop_size) # 适应度
self.best_path = np.zeros(city_num, dtype=int) # 最优路径
self.best_dist = np.inf # 最优距离
# 计算距离矩阵
def get_dist_mat(self):
dist_mat = np.zeros((self.city_num, self.city_num))
for i in range(self.city_num):
for j in range(i + 1, self.city_num):
dist_mat[i][j] = np.sqrt(np.sum(np.square(self.city_pos[i] - self.city_pos[j])))
dist_mat[j][i] = dist_mat[i][j]
return dist_mat
# 初始化种群
def init_pop(self):
for i in range(self.pop_size):
self.pop[i] = np.random.permutation(self.city_num)
# 计算适应度
def calc_fitness(self):
for i in range(self.pop_size):
dist = 0
for j in range(self.city_num - 1):
dist += self.dist_mat[self.pop[i][j]][self.pop[i][j + 1]]
dist += self.dist_mat[self.pop[i][-1]][self.pop[i][0]]
self.fitness[i] = 1 / dist
# 选择操作
def selection(self):
idx = np.random.choice(self.pop_size, size=self.pop_size, replace=True, p=self.fitness / np.sum(self.fitness))
self.pop = self.pop[idx]
# 交叉操作
def crossover(self):
for i in range(0, self.pop_size, 2):
if np.random.rand() < self.pc:
j, k = np.random.choice(self.city_num, size=2, replace=False)
if j > k:
j, k = k, j
temp1 = np.zeros(self.city_num, dtype=int)
temp2 = np.zeros(self.city_num, dtype=int)
temp1[j:k] = self.pop[i + 1][j:k]
temp2[j:k] = self.pop[i][j:k]
idx1 = 0
idx2 = 0
for m in range(self.city_num):
if self.pop[i][m] not in temp1[j:k]:
temp1[idx1] = self.pop[i][m]
idx1 += 1
if self.pop[i + 1][m] not in temp2[j:k]:
temp2[idx2] = self.pop[i + 1][m]
idx2 += 1
self.pop[i] = temp1
self.pop[i + 1] = temp2
# 变异操作
def mutation(self):
for i in range(self.pop_size):
if np.random.rand() < self.pm:
j, k = np.random.choice(self.city_num, size=2, replace=False)
self.pop[i][j], self.pop[i][k] = self.pop[i][k], self.pop[i][j]
# 获取最优解
def get_best_path(self):
for i in range(self.pop_size):
dist = 0
for j in range(self.city_num - 1):
dist += self.dist_mat[self.pop[i][j]][self.pop[i][j + 1]]
dist += self.dist_mat[self.pop[i][-1]][self.pop[i][0]]
if dist < self.best_dist:
self.best_path = self.pop[i]
self.best_dist = dist
# 迭代
def evolve(self):
self.init_pop()
self.calc_fitness()
self.get_best_path()
for i in range(self.max_gen):
self.selection()
self.crossover()
self.mutation()
self.calc_fitness()
self.get_best_path()
# 绘制城市分布图和最优路径图
def plot(self):
plt.figure(figsize=(10, 5))
plt.subplot(121)
plt.scatter(self.city_pos[:, 0], self.city_pos[:, 1])
plt.title('City Distribution')
plt.subplot(122)
plt.plot(self.city_pos[self.best_path][:, 0], self.city_pos[self.best_path][:, 1], '-o')
plt.title('Best Path')
plt.show()
# 示例
tsp = TSP(city_num=20, pop_size=100, pc=0.8, pm=0.1, max_gen=500)
tsp.evolve()
tsp.plot()
```
阅读全文