tf.keras.layers.Conv2D(kernel_size=(4, 1), filters=8, strides=(1, 1), padding="same",
时间: 2023-10-17 17:06:07 浏览: 129
activation="relu")
这是一个用于在Keras中创建卷积神经网络中的卷积层的代码。具体来说,这个层使用4x1的内核大小,8个过滤器,步幅为(1,1),填充模式为“same”(输入和输出具有相同的尺寸),激活函数为ReLU。这个层可以被添加到Keras模型中,用于图像分类或其他计算机视觉任务。
相关问题
model = tf.keras.Sequential()model.add(tf.keras.layers.ZeroPadding2D(((1,2),(1,2)),input_shape=(224,224,3))) model.add(tf.keras.layers.Conv2D(filters = 48, kernel_size = (11,11), strides = 4, activation = "relu")) model.add(tf.keras.layers.MaxPooling2D(pool_size = (3, 3),strides = 2)) model.add(tf.keras.layers.Conv2D(filters = 128, kernel_size = (5,5), padding = 'same', activation = "relu")) model.add(tf.keras.layers.MaxPooling2D(pool_size = (3, 3),strides = 2)) model.add(tf.keras.layers.Conv2D(filters = 192, kernel_size = (3,3), padding = 'same', activation = "relu")) model.add(tf.keras.layers.Conv2D(filters = 192, kernel_size = (3,3), padding = 'same', activation = "relu")) model.add(tf.keras.layers.Conv2D(filters = 128, kernel_size = (3,3), padding = 'same', activation = "relu")) model.add(tf.keras.layers.MaxPooling2D(pool_size = (3, 3),strides = 2)) model.add(tf.keras.layers.Flatten()) model.add(tf.keras.layers.Dropout(0.5)) model.add(tf.keras.layers.Dense(2048, activation='relu')) model.add(tf.keras.layers.Dropout(0.5)) model.add(tf.keras.layers.Dense(2048, activation='relu')) model.add(tf.keras.layers.Dense(5, activation='softmax'))这段代码什么意思
这段代码是用来定义一个卷积神经网络模型,其中包含了多个卷积层、池化层、全连接层和 Dropout 层。具体来说,这个模型共有 13 层,输入的图像尺寸为 224x224x3,输出的分类数为 5。其中:
- 第 1 层是零填充层,将输入的图像在四周填充 1 行或 2 列的 0,用于保持图像尺寸并减少边缘效应。
- 第 2 层是卷积层,包含了 48 个 11x11 的卷积核,步长为 4,使用 ReLU 激活函数。
- 第 3 层是最大池化层,使用 3x3 的池化窗口,步长为 2。
- 第 4 层是卷积层,包含了 128 个 5x5 的卷积核,使用 "same" 填充方式,使用 ReLU 激活函数。
- 第 5 层是最大池化层,使用 3x3 的池化窗口,步长为 2。
- 第 6 层是卷积层,包含了 192 个 3x3 的卷积核,使用 "same" 填充方式,使用 ReLU 激活函数。
- 第 7 层是卷积层,包含了 192 个 3x3 的卷积核,使用 "same" 填充方式,使用 ReLU 激活函数。
- 第 8 层是卷积层,包含了 128 个 3x3 的卷积核,使用 "same" 填充方式,使用 ReLU 激活函数。
- 第 9 层是最大池化层,使用 3x3 的池化窗口,步长为 2。
- 第 10 层是展平层,将多维输入展平成一维。
- 第 11 层是 Dropout 层,随机将一定比例的输入神经元置为 0,用于防止过拟合。
- 第 12 层是全连接层,包含了 2048 个神经元,使用 ReLU 激活函数。
- 第 13 层是 Dropout 层,随机将一定比例的输入神经元置为 0,用于防止过拟合。
- 第 14 层是全连接层,包含了 2048 个神经元,使用 ReLU 激活函数。
- 第 15 层是全连接层,包含了 5 个神经元,使用 softmax 激活函数,用于分类输出。
import tensorflow as tf class Residual(tf.keras.layers.Layer): def __init__(self, in_c, out_c): super(Residual, self).__init__() self.conv = tf.keras.Sequential([ tf.keras.layers.Conv2D(out_c, kernel_size=3, padding='same'), tf.keras.layers.BatchNormalization(), tf.keras.layers.ReLU(), tf.keras.layers.Conv2D(out_c, kernel_size=3, padding='same'), tf.keras.layers.BatchNormalization(), tf.keras.layers.ReLU() ]) self.botneck = tf.keras.layers.Conv2D(out_c, kernel_size=1) self.pool = tf.keras.layers.MaxPooling2D(pool_size=(2, 2), strides=(2, 2)) def call(self, x): x_prim = x x = self.conv(x) x = self.botneck(x_prim) + x x = self.pool(x) return x
这是一个ResNet的残差块,使用TensorFlow实现。参数含义如下:
- `in_c`:输入张量的通道数
- `out_c`:输出张量的通道数
在`__init__`方法中,定义了一个由多个卷积、批归一化和ReLU激活函数组成的序列模型`self.conv`,以及一个$1\times 1$的卷积层`self.botneck`和一个最大池化层`self.pool`。
在`call`方法中,将输入张量`x`保存在`x_prim`中,然后通过序列模型`self.conv`进行卷积操作,再通过$1\times 1$的卷积层`self.botneck`将`x_prim`也变成`out_c`通道数的张量,并将这两个张量相加。最后,通过最大池化层`self.pool`进行下采样。
阅读全文