conv_1 = tf.keras.layers.Conv2D(filters=32, kernel_size=(3, 3), strides=(1, 1), padding='same', activation="relu", name="conv_1", kernel_initializer='glorot_uniform')(inputs) max_pooling_1 = tf.keras.layers.MaxPool2D((2, 2), (2, 2), padding="same")(conv_1) conv_2 = tf.keras.layers.Conv2D(64, (3, 3), padding='same', activation="relu", name="conv_2", kernel_initializer='glorot_uniform')(max_pooling_1) max_pooling_2 = tf.keras.layers.MaxPool2D((2, 2), (2, 2), padding="same")(conv_2) max_pooling_2_flat = tf.keras.layers.Flatten()(max_pooling_2) fc_1 = tf.keras.layers.Dense(200, activation="relu", kernel_initializer='he_normal')(max_pooling_2_flat) outputs = tf.keras.layers.Dense(10, activation=None)(fc_1)
时间: 2023-05-21 13:05:27 浏览: 196
这是一个使用 TensorFlow 实现的卷积神经网络模型,由两个卷积层和两个最大池化层构成,还包括一个 Flatten 层和两个全连接层。该模型总共有 10 个输出节点,没有指定特定的激活函数。这个模型可以用于图像分类任务。
相关问题
下面代码在tensorflow中出现了init() missing 1 required positional argument: 'cell'报错: class Model(): def init(self): self.img_seq_shape=(10,128,128,3) self.img_shape=(128,128,3) self.train_img=dataset # self.test_img=dataset_T patch = int(128 / 2 ** 4) self.disc_patch = (patch, patch, 1) self.optimizer=tf.keras.optimizers.Adam(learning_rate=0.001) self.build_generator=self.build_generator() self.build_discriminator=self.build_discriminator() self.build_discriminator.compile(loss='binary_crossentropy', optimizer=self.optimizer, metrics=['accuracy']) self.build_generator.compile(loss='binary_crossentropy', optimizer=self.optimizer) img_seq_A = Input(shape=(10,128,128,3)) #输入图片 img_B = Input(shape=self.img_shape) #目标图片 fake_B = self.build_generator(img_seq_A) #生成的伪目标图片 self.build_discriminator.trainable = False valid = self.build_discriminator([img_seq_A, fake_B]) self.combined = tf.keras.models.Model([img_seq_A, img_B], [valid, fake_B]) self.combined.compile(loss=['binary_crossentropy', 'mse'], loss_weights=[1, 100], optimizer=self.optimizer,metrics=['accuracy']) def build_generator(self): def res_net(inputs, filters): x = inputs net = conv2d(x, filters // 2, (1, 1), 1) net = conv2d(net, filters, (3, 3), 1) net = net + x # net=tf.keras.layers.LeakyReLU(0.2)(net) return net def conv2d(inputs, filters, kernel_size, strides): x = tf.keras.layers.Conv2D(filters, kernel_size, strides, 'same')(inputs) x = tf.keras.layers.BatchNormalization()(x) x = tf.keras.layers.LeakyReLU(alpha=0.2)(x) return x d0 = tf.keras.layers.Input(shape=(10, 128, 128, 3)) out= ConvRNN2D(filters=32, kernel_size=3,padding='same')(d0) out=tf.keras.layers.Conv2D(3,1,1,'same')(out) return keras.Model(inputs=d0, outputs=out) def build_discriminator(self): def d_layer(layer_input, filters, f_size=4, bn=True): d = tf.keras.layers.Conv2D(filters, kernel_size=f_size, strides=2, padding='same')(layer_input) if bn: d = tf.keras.layers.BatchNormalization(momentum=0.8)(d) d = tf.keras.layers.LeakyReLU(alpha=0.2)(d) return d img_A = tf.keras.layers.Input(shape=(10, 128, 128, 3)) img_B = tf.keras.layers.Input(shape=(128, 128, 3)) df = 32 lstm_out = ConvRNN2D(filters=df, kernel_size=4, padding="same")(img_A) lstm_out = tf.keras.layers.LeakyReLU(alpha=0.2)(lstm_out) combined_imgs = tf.keras.layers.Concatenate(axis=-1)([lstm_out, img_B]) d1 = d_layer(combined_imgs, df)#64 d2 = d_layer(d1, df * 2)#32 d3 = d_layer(d2, df * 4)#16 d4 = d_layer(d3, df * 8)#8 validity = tf.keras.layers.Conv2D(1, kernel_size=4, strides=1, padding='same')(d4) return tf.keras.Model([img_A, img_B], validity)
你在定义 Model 类时,没有传入参数 cell,但是在代码中使用了 ConvRNN2D 的实例化对象,这个对象需要一个 cell 参数。你需要在初始化函数中添加这个参数,如下所示:
```
class Model():
def __init__(self, cell):
self.img_seq_shape=(10,128,128,3)
self.img_shape=(128,128,3)
self.train_img=dataset
patch = int(128 / 2 ** 4)
self.disc_patch = (patch, patch, 1)
self.optimizer=tf.keras.optimizers.Adam(learning_rate=0.001)
self.build_generator=self.build_generator()
self.build_discriminator=self.build_discriminator(cell)
self.build_discriminator.compile(loss='binary_crossentropy', optimizer=self.optimizer, metrics=['accuracy'])
self.build_generator.compile(loss='binary_crossentropy', optimizer=self.optimizer)
img_seq_A = Input(shape=(10,128,128,3))
img_B = Input(shape=self.img_shape)
fake_B = self.build_generator(img_seq_A)
self.build_discriminator.trainable = False
valid = self.build_discriminator([img_seq_A, fake_B])
self.combined = tf.keras.models.Model([img_seq_A, img_B], [valid, fake_B])
self.combined.compile(loss=['binary_crossentropy', 'mse'], loss_weights=[1, 100], optimizer=self.optimizer,metrics=['accuracy'])
def build_generator(self):
def res_net(inputs, filters):
x = inputs
net = conv2d(x, filters // 2, (1, 1), 1)
net = conv2d(net, filters, (3, 3), 1)
net = net + x
return net
def conv2d(inputs, filters, kernel_size, strides):
x = tf.keras.layers.Conv2D(filters, kernel_size, strides, 'same')(inputs)
x = tf.keras.layers.BatchNormalization()(x)
x = tf.keras.layers.LeakyReLU(alpha=0.2)(x)
return x
d0 = tf.keras.layers.Input(shape=(10, 128, 128, 3))
out= ConvRNN2D(cell, filters=32, kernel_size=3,padding='same')(d0)
out=tf.keras.layers.Conv2D(3,1,1,'same')(out)
return keras.Model(inputs=d0, outputs=out)
def build_discriminator(self, cell):
def d_layer(layer_input, filters, f_size=4, bn=True):
d = tf.keras.layers.Conv2D(filters, kernel_size=f_size, strides=2, padding='same')(layer_input)
if bn:
d = tf.keras.layers.BatchNormalization(momentum=0.8)(d)
d = tf.keras.layers.LeakyReLU(alpha=0.2)(d)
return d
img_A = tf.keras.layers.Input(shape=(10, 128, 128, 3))
img_B = tf.keras.layers.Input(shape=(128, 128, 3))
df = 32
lstm_out = ConvRNN2D(cell, filters=df, kernel_size=4, padding="same")(img_A)
lstm_out = tf.keras.layers.LeakyReLU(alpha=0.2)(lstm_out)
combined_imgs = tf.keras.layers.Concatenate(axis=-1)([lstm_out, img_B])
d1 = d_layer(combined_imgs, df)#64
d2 = d_layer(d1, df * 2)#32
d3 = d_layer(d2, df * 4)#16
d4 = d_layer(d3, df * 8)#8
validity = tf.keras.layers.Conv2D(1, kernel_size=4, strides=1, padding='same')(d4)
return tf.keras.Model([img_A, img_B], validity)
```
conv_1 = tf.keras.layers.Conv2D(filters = 64,kernel_size=(5,5),strides=(2,2), padding='same', activation='relu', name="conv_1", kernel_initializer='glorot_uniform')(inputs) conv_2 = tf.keras.layers.Conv2D(128,(5,5),(2,2),padding='same', activation='relu', name="conv_2", kernel_initializer='glorot_uniform')(conv_1) add_noise = tf.add(conv_2,np.random.normal(0,0.1,(32,7,7,128))) conv_3 = tf.keras.layers.Conv2DTranspose(128,(5,5),(2,2),padding='same', activation="relu", name="conv_3", kernel_initializer='glorot_uniform')(add_noise) conv_4 = tf.keras.layers.Conv2DTranspose(64,(5,5),(2,2),padding='same', activation="relu", name="conv_4", kernel_initializer='glorot_uniform')(conv_3) outputs = tf.keras.layers.Conv2DTranspose(1,(5,5),(1,1),padding='same', activation='tanh', name="outputs", kernel_initializer='glorot_uniform')(conv_4)
这是一段 TensorFlow 的代码,用于建立一个 CNN 模型,用于图像的生成任务。该模型的输入是 inputs,通过四个卷积层和一个反卷积层,最终生成一个大小相同的图像,输出在 outputs 中。其中,Conv2D 和 Conv2DTranspose 分别表示卷积层和反卷积层,filters 表示卷积核的数量,kernel_size 和 strides 分别表示卷积核的大小和步长,padding 表示是否进行边界填充,kernel_initializer 表示卷积核的初始化方式,add_noise 表示在 conv_2 的输出上添加一个噪声矩阵。
阅读全文