深度强化学习ddpg代码
时间: 2023-06-30 11:20:33 浏览: 109
这里是Deep Deterministic Policy Gradient (DDPG)算法的TensorFlow 2.0实现代码:
```python
import tensorflow as tf
import numpy as np
class Actor(tf.keras.Model):
def __init__(self, state_dim, action_dim, action_max):
super().__init__()
self.action_max = action_max
self.fc1 = tf.keras.layers.Dense(64, activation='relu')
self.fc2 = tf.keras.layers.Dense(32, activation='relu')
self.out = tf.keras.layers.Dense(action_dim, activation='tanh')
def call(self, inputs):
x = self.fc1(inputs)
x = self.fc2(x)
actions = self.out(x) * self.action_max
return actions
class Critic(tf.keras.Model):
def __init__(self, state_dim, action_dim):
super().__init__()
self.fc1 = tf.keras.layers.Dense(64, activation='relu')
self.fc2 = tf.keras.layers.Dense(32, activation='relu')
self.out = tf.keras.layers.Dense(1)
def call(self, inputs):
x, actions = inputs
x = self.fc1(tf.concat([x, actions], axis=-1))
x = self.fc2(x)
q_values = self.out(x)
return q_values
class DDPG:
def __init__(self, state_dim, action_dim, action_max):
self.state_dim = state_dim
self.action_dim = action_dim
self.action_max = action_max
self.actor_optimizer = tf.keras.optimizers.Adam(0.001)
self.critic_optimizer = tf.keras.optimizers.Adam(0.002)
self.actor = Actor(self.state_dim, self.action_dim, self.action_max)
self.critic = Critic(self.state_dim, self.action_dim)
self.target_actor = Actor(self.state_dim, self.action_dim, self.action_max)
self.target_critic = Critic(self.state_dim, self.action_dim)
self.target_actor.set_weights(self.actor.get_weights())
self.target_critic.set_weights(self.critic.get_weights())
def get_action(self, state):
state = np.expand_dims(state, axis=0)
action = self.actor(state)
return action.numpy()[0]
def train(self, states, actions, rewards, next_states, dones, gamma=0.99, tau=0.001):
states = tf.convert_to_tensor(states, dtype=tf.float32)
actions = tf.convert_to_tensor(actions, dtype=tf.float32)
rewards = tf.convert_to_tensor(rewards, dtype=tf.float32)
next_states = tf.convert_to_tensor(next_states, dtype=tf.float32)
dones = tf.convert_to_tensor(dones, dtype=tf.float32)
with tf.GradientTape() as tape:
target_actions = self.target_actor(next_states)
q_values = self.target_critic([next_states, target_actions])
target_q_values = rewards + gamma * (1 - dones) * q_values
critic_loss = tf.reduce_mean((target_q_values - self.critic([states, actions])) ** 2)
critic_grads = tape.gradient(critic_loss, self.critic.trainable_variables)
self.critic_optimizer.apply_gradients(zip(critic_grads, self.critic.trainable_variables))
with tf.GradientTape() as tape:
new_actions = self.actor(states)
actor_loss = -tf.reduce_mean(self.critic([states, new_actions]))
actor_grads = tape.gradient(actor_loss, self.actor.trainable_variables)
self.actor_optimizer.apply_gradients(zip(actor_grads, self.actor.trainable_variables))
self.soft_update(self.target_actor.variables, self.actor.variables, tau)
self.soft_update(self.target_critic.variables, self.critic.variables, tau)
def soft_update(self, target_vars, source_vars, tau):
for target_var, source_var in zip(target_vars, source_vars):
target_var.assign(tau * source_var + (1 - tau) * target_var)
```
这段代码定义了一个DDPG类,其中包含了Actor和Critic两个神经网络模型。在get_action方法中,根据当前状态,使用Actor模型预测一个动作。在train方法中,根据经验回放缓存中的数据,计算Critic的损失并更新Critic模型,然后计算Actor的损失并更新Actor模型。此外,还使用软更新的方式更新目标Actor和Critic模型。
阅读全文