flownet中的correlation代码pytorch实现
时间: 2023-09-30 14:06:28 浏览: 126
Python-FlowNet20的一个Pytorch实现
以下是使用PyTorch实现的Flownet中的correlation代码:
```python
import torch
def correlation(x1, x2, kernel_size=1, stride=1, padding=0, dilation=1):
# x1, x2: [batch_size, channel, height, width]
# kernel_size: kernel size of cross-correlation
# stride: stride of cross-correlation
# padding: padding of cross-correlation
# dilation: dilation of cross-correlation
batch_size, channels, height, width = x1.size()
# pad input tensors
padding_size = kernel_size // 2
x1 = torch.nn.functional.pad(x1, (padding_size, padding_size, padding_size, padding_size))
x2 = torch.nn.functional.pad(x2, (padding_size, padding_size, padding_size, padding_size))
# create output tensor
out_channels = channels * kernel_size * kernel_size
out_height = (height + 2 * padding - kernel_size) // stride + 1
out_width = (width + 2 * padding - kernel_size) // stride + 1
output = torch.zeros(batch_size, out_channels, out_height, out_width).to(x1.device)
# cross-correlate
for i in range(kernel_size):
for j in range(kernel_size):
x1_shifted = x1[:, :, i:i+out_height*stride:stride, j:j+out_width*stride:stride].reshape(batch_size, channels, -1)
x2_shifted = x2[:, :, i:i+out_height*stride:stride, j:j+out_width*stride:stride].reshape(batch_size, channels, -1)
output[:, (i*kernel_size+j)*channels:(i*kernel_size+j+1)*channels, :, :] = torch.bmm(x1_shifted.permute(0,2,1), x2_shifted)
return output.reshape(batch_size, out_channels, out_height, out_width)
```
该函数接受两个输入张量x1和x2,以及卷积核大小kernel_size,步长stride,填充padding和膨胀dilation。它返回x1和x2之间的相互关系张量。
在该函数中,我们首先对输入张量进行填充以使其与卷积核大小对齐。然后,我们根据卷积核大小和步长计算输出张量的大小,并创建一个全零张量作为输出。最后,我们遍历卷积核的所有位置并计算x1和x2之间的相互关系,将结果存储在输出张量中。
我们可以使用该函数来实现Flownet中的correlation层。
阅读全文