第1关:dbscan算法的基本概念
时间: 2024-05-23 09:03:32 浏览: 274
DBSCAN(Density-Based Spatial Clustering of Applications with Noise,具有噪声的基于密度的聚类方法)是一种基于密度的聚类算法,可以将数据集划分为多个簇,同时还能够识别出噪声点(不属于任何簇的数据点)。其基本思想是将密度相连的数据点划分为同一簇,通过控制密度和距离的阈值参数,可以得到不同形状和大小的簇。
在DBSCAN算法中,每个数据点都有两个重要的参数:邻域半径(epsilon)和最小邻居数(MinPts)。邻域半径定义了一个数据点的邻域范围,而最小邻居数指的是在邻域范围内必须存在的数据点数量。通过这两个参数,可以将数据点分为三类:核心点、边界点和噪声点。
核心点是指在其邻域内存在至少MinPts个数据点的数据点,边界点是指在其邻域内存在少于MinPts个数据点的数据点,但是它属于某个核心点的邻域,噪声点是指不属于任何核心点或边界点的数据点。
DBSCAN算法的基本流程如下:
1. 随机选取一个未被访问的数据点p。
2. 以p为中心,找出其邻域内的所有数据点。
3. 如果p是核心点,则以p为种子点,找出所有密度可达点,并将它们划分为一个簇。
4. 如果p不是核心点,则将p标记为噪声点。
5. 重复以上过程,直到所有数据点都被访问过。最终得到若干个簇和一些噪声点。
阅读全文
相关推荐


















