用分枝限界法求0/1背包问题python代码
时间: 2023-10-22 13:10:59 浏览: 84
分支界限法求0-1背包问题
4星 · 用户满意度95%
好的,以下是用分枝限界法求0/1背包问题的Python代码:
```
from queue import Queue
class Node:
def __init__(self, level, weight, value, include):
self.level = level
self.weight = weight
self.value = value
self.include = include
def __lt__(self, other):
return (self.value / self.weight) > (other.value / other.weight)
def bound(node, n, W, weight, value):
if node.weight >= W:
return 0
else:
i = node.level + 1
bound_val = node.value
total_weight = node.weight
while i < n and total_weight + weight[i] <= W:
total_weight += weight[i]
bound_val += value[i]
i += 1
if i < n:
bound_val += (W - total_weight) * (value[i] / weight[i])
return bound_val
def knapsack(n, W, weight, value):
q = Queue()
root = Node(-1, 0, 0, "")
q.put(root)
best_node = root
while not q.empty():
node = q.get()
if node.include == "":
left = Node(node.level + 1, weight[node.level], value[node.level], "in")
right = Node(node.level + 1, 0, 0, "out")
elif node.include == "in":
left = Node(node.level + 1, node.weight + weight[node.level], node.value + value[node.level], "in")
right = Node(node.level + 1, node.weight, node.value, "out")
else:
continue
if left.weight <= W and left.value > best_node.value:
best_node = left
if bound(left, n, W, weight, value) > best_node.value:
q.put(left)
if bound(right, n, W, weight, value) > best_node.value:
q.put(right)
return best_node.value
n = int(input("请输入物品数量:"))
W = int(input("请输入背包容量:"))
weight = []
value = []
for i in range(n):
w = int(input("请输入第%d个物品的重量:" % (i+1)))
v = int(input("请输入第%d个物品的价值:" % (i+1)))
weight.append(w)
value.append(v)
max_value = knapsack(n, W, weight, value)
print("0/1背包问题的最大价值为:%d" % max_value)
```
以上代码采用了分枝限界法求解0/1背包问题,使用Python语言编写。输入物品数量、背包容量、以及每个物品的重量和价值,输出最大价值。
阅读全文