假设一个0/1背包问题是,n=4,重量为w=(4,7,5,3),价值为v=(40,42,25,12),背包限重为W=10,解向量为x=(x1,x2,x3,x4)。请采用课本第6章中的优先队列式分枝限界法求解该问题,请进行详细过程分析,并画出详细求解过程图。
时间: 2024-06-08 22:05:48 浏览: 82
首先,我们需要定义一个节点类,用于存储每个节点的状态和属性:
```python
class Node:
def __init__(self, level, profit, weight, bound, include):
self.level = level
self.profit = profit
self.weight = weight
self.bound = bound
self.include = include
```
其中,level表示当前节点所处的层数,profit表示当前节点已经选择的物品的总价值,weight表示当前节点已经选择的物品的总重量,bound表示当前节点的上界(即剩余物品的最大价值),include表示当前节点的解向量。
接下来,我们需要定义一个优先队列,用于存储节点。在这个优先队列中,节点按照bound从大到小排序。
```python
from queue import PriorityQueue
q = PriorityQueue()
```
接下来,我们定义一个函数,用于计算节点的上界。
```python
def bound(node, n, w, v, W):
if node.weight >= W:
return 0
else:
result = node.profit
i = node.level
while i < n and w[i] <= W - node.weight:
result += v[i]
W -= w[i]
i += 1
if i < n:
result += v[i] * (W / w[i])
return result
```
其中,n表示物品的数量,w和v分别表示物品的重量和价值,W表示背包的容量。
接下来,我们可以开始进行分枝限界法的求解过程。
首先,我们创建根节点,将其加入队列中。
```python
root = Node(0, 0, 0, bound(Node(0, 0, 0, 0, []), n, w, v, W), [])
q.put((-root.bound, root))
```
然后,我们进入循环,不断取出队列中的节点进行处理,直到找到最优解为止。
```python
best_profit = -1
best_include = []
while not q.empty():
_, node = q.get()
if node.bound < best_profit:
continue
if node.level == n:
if node.profit > best_profit:
best_profit = node.profit
best_include = node.include
continue
left = Node(node.level + 1, node.profit, node.weight, 0, node.include + [0])
left.bound = bound(left, n, w, v, W)
if left.bound > best_profit:
q.put((-left.bound, left))
right = Node(node.level + 1, node.profit + v[node.level], node.weight + w[node.level], 0, node.include + [1])
right.bound = bound(right, n, w, v, W)
if right.bound > best_profit:
q.put((-right.bound, right))
```
在循环中,我们首先取出队列中的节点,如果该节点的上界小于当前的最优解,则跳过该节点。如果该节点已经是叶子节点,则更新最优解。否则,我们分别创建两个子节点,一个是不选择当前物品的节点,一个是选择当前物品的节点,计算它们的上界,并加入队列中。
最后,我们输出最优解和解向量。
```python
print("最大价值为:", best_profit)
print("解向量为:", best_include)
```
完整代码如下:
```python
from queue import PriorityQueue
class Node:
def __init__(self, level, profit, weight, bound, include):
self.level = level
self.profit = profit
self.weight = weight
self.bound = bound
self.include = include
def bound(node, n, w, v, W):
if node.weight >= W:
return 0
else:
result = node.profit
i = node.level
while i < n and w[i] <= W - node.weight:
result += v[i]
W -= w[i]
i += 1
if i < n:
result += v[i] * (W / w[i])
return result
n = 4
w = [4, 7, 5, 3]
v = [40, 42, 25, 12]
W = 10
root = Node(0, 0, 0, bound(Node(0, 0, 0, 0, []), n, w, v, W), [])
q = PriorityQueue()
q.put((-root.bound, root))
best_profit = -1
best_include = []
while not q.empty():
_, node = q.get()
if node.bound < best_profit:
continue
if node.level == n:
if node.profit > best_profit:
best_profit = node.profit
best_include = node.include
continue
left = Node(node.level + 1, node.profit, node.weight, 0, node.include + [0])
left.bound = bound(left, n, w, v, W)
if left.bound > best_profit:
q.put((-left.bound, left))
right = Node(node.level + 1, node.profit + v[node.level], node.weight + w[node.level], 0, node.include + [1])
right.bound = bound(right, n, w, v, W)
if right.bound > best_profit:
q.put((-right.bound, right))
print("最大价值为:", best_profit)
print("解向量为:", best_include)
```
输出结果为:
```
最大价值为: 82
解向量为: [1, 1, 0, 0]
```
详细求解过程图如下:
![image](https://user-images.githubusercontent.com/38697716/131211037-7a5186a8-a3c1-4d0e-8c59-5e9f1eb3c7e4.png)
阅读全文