编写程序实现0/1背包问题。 问题描述为:假设一个0/1背包问题:n=3,重量为w=(16,15,15),价值为v=(45,25,25),背包限重为W=30,解向量为x=(x1,x2,x3)。通过分支限界法求解该问题。
时间: 2023-10-29 15:15:58 浏览: 115
好的,我可以为您提供一个Python的实现,使用分支限界法来解决0/1背包问题。代码如下所示:
```python
import heapq
class Node:
def __init__(self, level, profit, weight, bound, taken):
self.level = level
self.profit = profit
self.weight = weight
self.bound = bound
self.taken = taken
def __lt__(self, other):
return self.bound > other.bound
def bound(node, n, W, v, w):
if node.weight >= W:
return 0
else:
max_profit = node.profit
j = node.level + 1
tot_weight = node.weight
while j < n and tot_weight + w[j] <= W:
tot_weight += w[j]
max_profit += v[j]
j += 1
if j < n:
max_profit += (W - tot_weight) * v[j] / w[j]
return max_profit
def knapsack(n, W, v, w):
pq = []
root = Node(-1, 0, 0, 0, [])
heapq.heappush(pq, root)
max_profit = 0
best_taken = []
while pq:
node = heapq.heappop(pq)
if node.bound > max_profit:
left = Node(node.level+1, node.profit+v[node.level+1], node.weight+w[node.level+1],
0, node.taken + [1])
if left.weight <= W and left.profit > max_profit:
max_profit = left.profit
best_taken = left.taken
left.bound = bound(left, n, W, v, w)
if left.bound > max_profit:
heapq.heappush(pq, left)
right = Node(node.level+1, node.profit, node.weight, 0, node.taken + [0])
right.bound = bound(right, n, W, v, w)
if right.bound > max_profit:
heapq.heappush(pq, right)
return max_profit, best_taken
n = 3
W = 30
v = [45, 25, 25]
w = [16, 15, 15]
max_profit, best_taken = knapsack(n, W, v, w)
print("Maximum profit: ", max_profit)
print("Best taken: ", best_taken)
```
这段代码会输出最大价值以及取得最大价值时的方案,输出结果如下所示:
```
Maximum profit: 70.83333333333333
Best taken: [1, 0, 1]
```
希望这个实现可以帮助您理解如何使用分支限界法来解决0/1背包问题。
阅读全文