把我写一下利用遗传算法解决柔性车间调度问题的代码
时间: 2023-08-28 17:21:39 浏览: 84
好的,这里是一个简单的利用遗传算法解决柔性车间调度问题的Python代码示例:
```python
import random
# 初始化参数
POP_SIZE = 100 # 种群大小
CROSS_RATE = 0.8 # 交叉率
MUTATION_RATE = 0.05 # 变异率
N_GENERATIONS = 50 # 迭代次数
# 定义调度问题,这里以一个简单的例子为例
JOBS = [[2, 1, 2], [1, 2, 3], [3, 2, 1]] # 三个工件,每个工件有三个任务,每个任务包含机器编号和加工时间
MACHINES = 3 # 三台机器
# 编码方式:每个染色体表示一个调度方案,每个基因表示一个任务
def encode_chromosome():
chromosome = []
for i in range(len(JOBS)):
chromosome.extend(JOBS[i])
random.shuffle(chromosome)
return chromosome
# 解码方式:将染色体解码成调度方案
def decode_chromosome(chromosome):
jobs = [[] for i in range(len(JOBS))]
for i in range(len(chromosome)):
job_index = i // MACHINES
jobs[job_index].append((chromosome[i], JOBS[job_index][i % MACHINES]))
for i in range(len(jobs)):
jobs[i] = sorted(jobs[i], key=lambda x: x[1])
return jobs
# 适应度函数:计算调度方案的完成时间和机器利用率等指标
def fitness(chromosome):
jobs = decode_chromosome(chromosome)
machines = [0] * MACHINES
time = 0
for i in range(len(jobs)):
for j in range(len(jobs[i])):
machine_index = jobs[i][j][0] - 1
time = max(time, machines[machine_index]) + jobs[i][j][1]
machines[machine_index] = time
return 1 / time
# 选择算子:轮盘赌选择
def select(population):
fitness_list = [fitness(chromosome) for chromosome in population]
total_fitness = sum(fitness_list)
roulette_wheel = [fitness_list[i] / total_fitness for i in range(len(population))]
return random.choices(population, weights=roulette_wheel)
# 交叉算子:单点交叉
def crossover(parents):
child1, child2 = parents
if random.random() < CROSS_RATE:
cross_point = random.randint(1, len(child1) - 1)
child1[cross_point:], child2[cross_point:] = child2[cross_point:], child1[cross_point:]
return child1, child2
# 变异算子:随机交换两个基因
def mutate(child):
if random.random() < MUTATION_RATE:
mutate_point1 = random.randint(0, len(child) - 1)
mutate_point2 = random.randint(0, len(child) - 1)
child[mutate_point1], child[mutate_point2] = child[mutate_point2], child[mutate_point1]
return child
# 遗传算法主函数
def genetic_algorithm():
# 初始化种群
population = [encode_chromosome() for i in range(POP_SIZE)]
for i in range(N_GENERATIONS):
# 选择操作
parents = [select(population) for j in range(2)]
# 交叉操作
offspring = [crossover(parents) for j in range(POP_SIZE // 2)]
# 变异操作
offspring = [mutate(child) for child in offspring]
# 环境选择
population = parents + offspring
population = sorted(population, key=lambda x: -fitness(x))
population = population[:POP_SIZE]
# 返回最优解
best_chromosome = max(population, key=lambda x: fitness(x))
best_jobs = decode_chromosome(best_chromosome)
return best_jobs
# 测试
best_jobs = genetic_algorithm()
print(best_jobs)
```
这个示例代码简单实现了遗传算法的主要组成部分,包括初始化种群、编码方式、适应度函数、选择算子、交叉算子、变异算子和环境选择等。在实际应用中,你需要根据具体的柔性车间调度问题进行调整和优化。
阅读全文