用遗传算法解决柔性车间调度问题(10器件,6车间)用Matlab实现
时间: 2024-06-09 12:09:41 浏览: 87
柔性车间调度问题是一个经典的优化问题,其中遗传算法是一种常见的优化算法之一。下面是一个基本的遗传算法实现柔性车间调度问题的示例,使用Matlab编写。
第一步是定义问题。在柔性车间调度问题中,我们需要安排一组作业在一组机器上运行,以最小化运行时间。每个作业可以在多个机器上运行,每个机器可以同时运行多个作业。我们需要定义以下参数:
- 器件数量
- 车间数量
- 作业数量
- 作业可运行的机器集合及对应的运行时间
- 所有机器可同时运行的最大作业数量
在这个例子中,我们使用10个器件和6个车间。
第二步是定义遗传算法的参数。我们需要定义以下参数:
- 种群大小
- 最大迭代次数
- 交叉概率
- 变异概率
在这个例子中,我们使用100个个体,最大迭代次数为1000,交叉概率为0.8,变异概率为0.1。
第三步是初始化种群。我们需要生成一组随机的个体,每个个体代表一组作业的调度方案。在这个例子中,我们使用随机排列算法生成初始种群。
第四步是评估个体适应度。我们需要计算每个个体的适应度,即该调度方案的运行时间。在这个例子中,我们使用作业流水线算法计算适应度。
第五步是选择。我们需要选择一组适应度高的个体作为下一代种群的父代。在这个例子中,我们使用轮盘赌选择算法选择父代。
第六步是交叉。我们需要使用交叉算法将父代个体组合成新的子代个体。在这个例子中,我们使用单点交叉算法。
第七步是变异。我们需要使用变异算法对子代个体进行变异,以增加种群的多样性。在这个例子中,我们使用随机重排变异算法。
最后,我们重复执行第四到第七步,直到达到最大迭代次数或找到最优解为止。
下面是一个Matlab代码示例,演示如何使用遗传算法解决柔性车间调度问题。
```matlab
% Define problem parameters
nJobs = 10; % Number of jobs
nMachines = 6; % Number of machines
nOperations = 2; % Number of operations per job
machines = {[1 2 3], [1 2 3], [2 3 4], [2 3 4], [3 4 5], [3 4 5]}; % Machines that each operation can run on
times = {[4 5], [5 6], [4 6], [5 7], [6 8], [7 9]}; % Times for each operation on each machine
maxLoad = 2; % Maximum number of jobs that can run on each machine at the same time
% Define genetic algorithm parameters
popSize = 100; % Population size
maxIter = 1000; % Maximum number of iterations
crossProb = 0.8; % Crossover probability
mutProb = 0.1; % Mutation probability
% Initialize population
pop = zeros(nJobs, nOperations, popSize);
for i = 1:popSize
pop(:,:,i) = randperm(nMachines, nJobs*nOperations);
end
% Evaluate fitness
fitness = zeros(popSize, 1);
for i = 1:popSize
fitness(i) = pipelineFitness(pop(:,:,i), machines, times);
end
% Main loop
for iter = 1:maxIter
% Selection
parents = rouletteSelection(pop, fitness);
% Crossover
children = zeros(nJobs, nOperations, popSize);
for i = 1:popSize/2
[children(:,:,i*2-1), children(:,:,i*2)] = singlePointCrossover(parents(:,:,i*2-1), parents(:,:,i*2), crossProb);
end
% Mutation
for i = 1:popSize
if rand < mutProb
children(:,:,i) = randomShuffleMutation(children(:,:,i));
end
end
% Evaluate fitness
for i = 1:popSize
fitness(i) = pipelineFitness(children(:,:,i), machines, times);
end
% Replacement
[pop, fitness] = elitistReplacement(pop, children, fitness);
% Display progress
[bestFitness, bestIdx] = min(fitness);
bestSolution = pop(:,:,bestIdx);
fprintf('Iteration %d, best fitness = %f\n', iter, bestFitness);
end
% Evaluate fitness using pipeline algorithm
function fitness = pipelineFitness(schedule, machines, times)
nJobs = size(schedule, 1);
nMachines = length(machines);
nOperations = size(schedule, 2);
% Calculate machine loads
load = zeros(nMachines, 1);
for i = 1:nJobs
for j = 1:nOperations
machine = machines{j}(schedule(i,j));
load(machine) = load(machine) + 1;
end
end
% Calculate makespan
makespan = 0;
for i = 1:nMachines
if load(i) > makespan
makespan = load(i);
end
end
% Calculate flowtime
flowtime = 0;
for i = 1:nJobs
startTimes = zeros(1, nOperations);
endTimes = zeros(1, nOperations);
for j = 1:nOperations
machine = machines{j}(schedule(i,j));
if j == 1
startTimes(j) = 0;
else
startTimes(j) = endTimes(j-1);
end
endTimes(j) = startTimes(j) + times{j}(machine);
end
flowtime = flowtime + endTimes(nOperations);
end
% Calculate tardiness
tardiness = 0;
% Calculate fitness
fitness = makespan + flowtime + tardiness;
end
% Roulette wheel selection
function parents = rouletteSelection(pop, fitness)
nParents = size(pop, 3);
parents = zeros(size(pop(:,:,1)), nParents);
totalFitness = sum(fitness);
if totalFitness == 0
% Handle zero fitness case
parents = pop(:,:,randperm(size(pop,3), nParents));
return;
end
prob = fitness./totalFitness;
cumProb = cumsum(prob);
for i = 1:nParents
r = rand;
j = find(cumProb >= r, 1);
parents(:,:,i) = pop(:,:,j);
end
end
% Single point crossover
function [child1, child2] = singlePointCrossover(parent1, parent2, prob)
nJobs = size(parent1, 1);
nOperations = size(parent1, 2);
if rand > prob
child1 = parent1;
child2 = parent2;
return;
end
point = randi(nJobs-1);
child1 = [parent1(1:point,:); parent2(point+1:end,:)];
child2 = [parent2(1:point,:); parent1(point+1:end,:)];
end
% Random shuffle mutation
function child = randomShuffleMutation(parent)
nJobs = size(parent, 1);
nOperations = size(parent, 2);
idx1 = randi(nJobs);
idx2 = randi(nJobs);
while idx2 == idx1
idx2 = randi(nJobs);
end
child = parent;
temp = child(idx1,:);
child(idx1,:) = child(idx2,:);
child(idx2,:) = temp;
end
% Elitist replacement
function [pop, fitness] = elitistReplacement(pop, children, fitness)
nParents = size(pop, 3);
nChildren = size(children, 3);
totalPop = cat(3, pop, children);
totalFitness = cat(1, fitness, zeros(nChildren, 1));
[~, idx] = sort(totalFitness);
pop = totalPop(:,:,idx(1:nParents));
fitness = totalFitness(idx(1:nParents));
end
```
阅读全文